The ability to achieve near-unity light extraction efficiency is necessary
for a truly deterministic single photon source. The most promising method to
reach such high efficiencies is based on embedding single photon emitters in
tapered photonic waveguides defined by top-down etching techniques. However,
light extraction efficiencies in current top-down approaches are limited by
fabrication imperfections and etching induced defects. The efficiency is
further tempered by randomly positioned off-axis quantum emitters. Here, we
present perfectly positioned single quantum dots on the axis of a tailored
nanowire waveguide using bottom-up growth. In comparison to quantum dots in
nanowires without waveguide, we demonstrate a 24-fold enhancement in the single
photon flux, corresponding to a light extraction efficiency of 42 %. Such high
efficiencies in one-dimensional nanowires are promising to transfer quantum
information over large distances between remote stationary qubits using flying
qubits within the same nanowire p-n junction.Comment: 19 pages, 6 figure