768 research outputs found

    Linear pose estimate from corresponding conics

    Get PDF
    We propose here a new method to recover the orientation and position of a plane by matching at least three projections of a conic lying on the plane itself. The procedure is based on rearranging the conic projection equations such that the non linear terms are eliminated. It works with any kind of conic and does not require that the shape of the conic is known a-priori. The method was extensively tested using ellipses, but it can also be used for hyperbolas and parabolas. It was further applied to pairs of lines, which can be viewed as a degenerate case of hyperbola, without requiring the correspondence problem to be solved first. Critical configurations and numerical stability have been analyzed through simulations. The accuracy of the proposed algorithm was compared to that of traditional algorithms and of a trinocular vision system using a set of landmarks

    Minimal Stability in Maximal Supergravity

    Get PDF
    Recently, it has been shown that maximal supergravity allows for non-supersymmetric AdS critical points that are perturbatively stable. We investigate this phenomenon of stability without supersymmetry from the sGoldstino point of view. In particular, we calculate the projection of the mass matrix onto the sGoldstino directions, and derive the necessary conditions for stability. Indeed we find a narrow window allowing for stable SUSY breaking points. As a by-product of our analysis, we find that it seems impossible to perturb supersymmetric critical points into non-supersymmetric ones: there is a minimal amount of SUSY breaking in maximal supergravity.Comment: 27 pages, 1 figure. v2: two typos corrected, published versio

    Rotational dynamics of optically trapped polymeric nanofibers

    Full text link
    The optical trapping of polymeric nanofibers and the characterization of the rotational dynamics are reported. A strategy to apply a torque to a polymer nanofiber, by tilting the trapped fibers using a symmetrical linear polarized Gaussian beam is demonstrated. Rotation frequencies up to 10 Hz are measured, depending on the trapping power, the fiber length and the tilt angle. A comparison of the experimental rotation frequencies in the different trapping configurations with calculations based on optical trapping and rotation of linear nanostructures through a T-Matrix formalism, accurately reproduce the measured data, providing a comprehensive description of the trapping and rotation dynamics.Comment: (21 pages, 5 figures

    Optical trapping calculations for metal nanoparticles. Comparison with experimental data for Au and Ag spheres.

    Get PDF
    We calculate the optical forces on Au and Ag nanospheres through a procedure based on the Maxwell stress tensor. We compare the theoretical and experimental force constants obtained for gold and silver nanospheres finding good agreement for all particles with r < 80 nm. The trapping of the larger particles recently demonstrated in experiments is not foreseen by our purely electromagnetic theory based on fixed dielectric properties. Since the laser power produces a heating that may be large for the largest spheres, we propose a model in which the latter particles are surrounded by a steam bubble. This model foresees the trapping of these particles and the results turn out to be in reasonable agreement with the experimental data

    Clustering the lexicon in the brain: a meta-analysis of the neurofunctional evidence on noun and verb processing

    Get PDF
    Although it is widely accepted that nouns and verbs are functionally independent linguistic entities, it is less clear whether their processing recruits different brain areas. This issue is particularly relevant for those theories of lexical semantics (and, more in general, of cognition) that suggest the embodiment of abstract concepts, i.e., based strongly on perceptual and motoric representations. This paper presents a formal meta analysis of the neuroimaging evidence on noun and verb processing in order to address this dichotomy more effectively at the anatomical level. We used a hierarchical clustering algorithm that grouped fMRI/PET activation peaks solely on the basis of spatial proximity. Cluster specificity for grammatical class was then tested on the basis of the noun verb distribution of the activation peaks included in each cluster. 32 clusters were identified: three were associated with nouns across different tasks (in the right inferior temporal gyrus, the left angular gyrus, and the left inferior parietal gyrus); one with verbs across different tasks (in the posterior part of the right middle temporal gyrus); and three showed verb specificity in some tasks and noun specificity in others (in the left and right inferior frontal gyrus and the left insula). These results do not support the popular tenets that verb processing is predominantly based in the left frontal cortex and noun processing relies specifically on temporal regions; nor do they support the idea that verb lexical semantic representations are heavily based on embodied motoric information. Our findings suggest instead that the cerebral circuits deputed to noun and verb processing lie in close spatial proximity in a wide network including frontal, parietal, and temporal regions. The data also indicate a predominant \u2013 but not exclusive \u2013 left lateralization of the network

    Validity and usability of a smart ball&#8211;driven serious game to monitor grip strength in independent elderlies

    Get PDF
    Telemonitoring is one of the most expedient answers to the strong need for preventive care imposed by the rapidly aging society. We propose an innovative solution to the detection of early signs of frailty by presenting a serious game controlled by a smart sensorized soft plastic ball, designed to achieve continuous home-based monitoring of muscle weakness in older adults. Design, development, and testing of the smart ball and of the game interface devised to guide the monitoring procedure are presented. Reliability and concurrent validity of the system in measuring maximal grip strength against the clinical standard Jamar\uae were evaluated. Serious game usability and acceptance were investigated on 26 elderlies. Smart ball and Jamar measurements were well correlated (0.76 and 0.80 for dominant and non-dominant hands) and test\u2013retest reliability of pressure measurements was excellent (intraclass correlation coefficient &gt;0.94). The serious game was well accepted by the 96.1 percent of participants, who provided a strongly positive usability score (87.7/100). The smart ball\u2013driven serious game demonstrated excellent reliability and good validity in measuring grip strength. The proposed smart ball\u2013driven serious game can be used for home self-monitoring of grip strength in elderlies

    Electrospun Conjugated Polymer/Fullerene Hybrid Fibers: Photoactive Blends, Conductivity through Tunnelling-AFM, Light-Scattering, and Perspective for Their Use in Bulk-Heterojunction Organic Solar Cells

    Get PDF
    Hybrid conjugated polymer/fullerene filaments based on MEH-PPV/PVP/PCBM are prepared by electrospinning, and their properties assessed by scanning electron, atomic and lateral force, tunnelling, and confocal microscopy, as well as by attenuated total reflection Fourier transform-infrared spectroscopy, photoluminescence quantum yield and spatially-resolved fluorescence. Highlighted features include ribbon-shape of the realized fibers, and the persistence of a network serving as a template for heterogeneous active layers in solar cell devices. A set of favorable characteristics is evidenced in this way in terms of homogeneous charge transport behavior and formation of effective interfaces for diffusion and dissociation of photogenerated excitons. The interaction of the organic filaments with light, exhibiting specific light-scattering properties of the nanofibrous mat, might also contribute to spreading incident radiation across the active layers, thus potentially enhancing photovoltaic performance. This method might be applied to other electron donor-electron acceptor material systems for the fabrication of solar cell devices enhanced by nanofibrillar morphologies embedding conjugated polymers and fullerene compounds.Comment: 35 pages, 9 figure

    Using Virtual Reality to Rehabilitate Neglect

    Get PDF
    Purpose: Virtual Reality (VR) platforms gained a lot of attention in the rehabilitation field due to their ability to engage patients and the opportunity they offer to use real world scenarios. As neglect is characterized by an impairment in exploring space that greatly affects daily living, VR could be a powerful tool compared to classical paper and pencil tasks and computer training. Nevertheless, available platforms are costly and obstructive. Here we describe a low cost platform for neglect rehabilitation, that using consumer equipments allows the patient to train at home in an intensive fashion. Method: We tested the platform on IB, a chronic neglect patient, who did not benefit from classical rehabilitation. Results: Our results show that IB improved both in terms of neglect and attention. Importantly, these ameliorations lasted at a follow up evaluation 5 months after the last treatment session and generalized to everyday life activities. Conclusions: VR platforms built using equipment technology and following theoretical principles on brain functioning may induce greater ameliorations in visuo-spatial deficits than classical paradigms possibly thanks to the real world scenarios in association with the "visual feedback" of the patient's own body operating in the virtual environmen
    • …
    corecore