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Abstract - We propose here a new method to recover the orientation and position of a plane by 

matching at least three projections of a conic lying on the plane itself. The procedure is based on 

rearranging the conic projection equations such that the non linear terms are eliminated. It works with 

any kind of conic and does not require that the shape of the conic is known a-priori. The method was 

extensively tested using ellipses, but it can also be used for hyperbolas and parabolas. It was further 

applied to pairs of lines, that can be viewed as a degenerate case of hyperbola, without requiring the 

correspondence problem to be solved first. Critical configurations and numerical stability have been 

analyzed through simulations. The accuracy of the proposed algorithm was compared to that of 

traditional algorithms and of a trinocular vision system using a set of landmarks.  

Index Terms - Conics, multi-view geometry, pose estimate, coplanar pairs of lines, critical 

configurations. 

1 INTRODUCTION 

Conics are considered, together with points and lines, one of the fundamental features in 

computer vision [1, 2]. They are often found on real objects and frequently adopted as reliable 

markers for calibration and for tracking objects in 3D space. Although points and lines lead to 

simpler mathematical formulation, conics contain more geometrical information: for instance, 

given two or more views, the correspondence between the images of the same conic is unique 

under some weak constraints [1]. Moreover, as the projection of a conic is again a conic, the 

mathematics is somewhat simplified and elegant at the same time. Lastly, since a conic is 
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represented by a symmetric matrix, its manipulation is generally easy [2]. Because of these 

reasons, a wide range of applications based on conics has been described in literature, including 

camera calibration [3], object reconstruction [4] and tracking of surgical instruments [5], robotic 

arms [6] as well as human hands wearing gloves inside an immersive virtual environment [2]. 

Most papers on conics focus on the problem of estimating the pose of a conic in 3D Euclidean 

space using a single camera [5-7]. In this case, some additional information about the curve, like 

its shape or its size, is needed. For instance [7] describes a method for tracking a circle in 3D 

space from a single projection, supposing that the radius of the circle is known; focus of the 

paper is in the development of a reliable algorithm for tracking the elliptical projection of the 

circle. In [6], a real-time algorithm for pose estimate of complex objects from a single camera is 

presented; it is based on tracking simple features, including the conic projections of circles and 

spheres and it uses a model of the object, based on kinematic chains, to recover the 3D pose of 

the entire object. 

When two or more cameras are used, a priori knowledge about the conic is not necessary to 

track it [8-10, 20-21]. In [8, 11, 12] conics as well as higher order algebraic curves are considered, 

but the system of equations associated to the problem includes many non linear terms: multiple 

solutions are possible and a time consuming, iterative optimization algorithm is necessary.  

In [9], the problem of recovering the pose of quadratic-curves (including conics) from two 

projections is analyzed. The solution is defined as the intersection between the two cones 

associated to the projections of the curves onto two cameras. This leads to a non linear system 

of nine equations with nine unknowns. A similar approach is described in [10]. 

A simpler solution is proposed by Quan in [1], where the pencil of quadrics including the two 

cones is first determined. The algorithm searches the unique degenerate quadric of the pencil, 
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that is represented by a 4x4 matrix of rank two. This is composed of two planes, one of which 

contains the unkown conic. Although the resulting equations are non-linear, a closed-solution is 

derived under reasonable hypotheses. However, this can be numerically unstable as recognized 

by the authors who stated that they “can never have a perfect rank two” [1].  

In this paper, we propose a different approach to determine the pose of a conic observed by 

at least three cameras. Rearranging the projection equations we derive linear relationships and 

obtain a robust and simple solution. From the intersection of the estimated plane and the 

projection cones of the conics images, we also determine the position of the conic in 3D space. 

No a priori knowledge is required on the shape or the dimension of the conic. The method has 

been extensively applied to both ellipses and pairs of intersecting lines, that constitutes a 

degenerated case of hyperbola. The experimental results on simulated and real data 

demonstrate the accuracy and reliability achieved with the proposed method that does not 

suffers from some instabilities typical of [1]. Morover, it can be also used with pairs of 

intersecting lines without solving the line correspondence problem first. 

The paper is organized as follows. Section 2 provides geometrical background; the method is 

described in Section 3. Section 4 gives details about the fitting algorithms, whereas Section 5 

and 6 report the experimental results on real and simulated data; these are discussed in Section 

7. A conclusion is finally drawn in Section 8. 

2 NOTATION AND BACKGROUND MATERIAL 

Let E3 denote the 3-dimensional Euclidean space where a point is represented in 

homogeneous coordinates as xT = (x1, x2, x3, x4) and the corresponding affine coordinates are 

(x1/x4, x2/x4, x3/x4) for x4 ≠ 0. Each camera realizes a perspective projection, described by a 3x4 
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matrix of rank three, defined for the i-th camera as [14]:  

   iii

T

i

T

iii vΠtRRKP ||   (1), 

where the matrix Ki contains the camera internal parameters, Ri is the 3x3 orientation matrix of 

the camera and ti the position of its projection center in E3. These are supposed to be known. By 

by a,b,c ⊂ E3 we will denote a plane, not passing through the origin, described by: 

4321 xcxbxax   (2). 

A conic on a,b,c can be obtained as the intersection of a quadric surface with a,b,c. In 

particular,  is given here by the intersection of a,b,c with the cone i projecting  from a point 

ti  a,b,c. A cone is in fact a degenerated quadric surface, represented by a 4x4 matrix of rank 3.  

Let us define an arbitrary reference frame in a,b,cIn this frame,  is represented in 

homogenous coordinates by the equation: 

0yLy γ

T
 (3) 

for a suitable 3x3 symmetric matrix, L. Analogously the cone i in E3 is represented by the 

equation: 

0xMx Γi

T  (4) 

for a suitable 4x4 symmetric matrix Mi. 

3 METHOD 

3.1 Reconstruction of a plane from three or more views of a conic 

Here we show how to compute the parameters of a,b,c from the projections of a conic 

 a,b,c on the image plane of three cameras. Let us indicate with i the projection onto the i-th 

camera; this is also a conic [14]. M1, M2, M3 indicate the matrices of the cones 1, 2 and 3 
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that project  onto 1, 2, 3 through the projection centers of the three cameras, t1, t2, t3. Given the 

matrix Mi, associated to the conic i measured on the i-th camera in the camera reference frame, 

and the camera projection matrix Pi the matrix Mi is given by [14]: 

iγi

T

iΓi PMPM    (5). 

Let us indicate with Li the matrix of the conic generated by the intersection of i with a,b,c. 

Since the intersection of the three cones 1, 2 and 3 with a,b,c produces the same conic , the 

coefficients of the matrices L1, L2 and L3 should be equal up to a multiplicative factor. In the 

following, we will show how to use this observation to compute a, b and c in (2). 

We first show how to get an easy-to-manipulate representation of  in  Let us consider 

three points of  a,b,c: [1, 0, 0, a]T, [0, 1, 0, b]T, [0, 0, 1, c]T and suppose that in  they have 

homogenous coordinates [1, 0, 0]T, [0, 1, 0]T and [0, 0, 1]T. With this choice of , we can define a 

4x3 matrix, N, that expresses the relationship between a point in E3 and a point in : 

Nyy
I

x 3 









cba
 (6). 

where I3 is the 3x3 identity matrix. Substituting (6) into (4) we obtain: 

0NyMNy Γi

T T  (7). 

Comparing (7) and (3), we get: 

NMNL Γii

T  (8), 

where the Li matrix contains the coefficients of   in the reference frame on a,b,c, computed 

starting from its projection onto the i-th camera, i. This relationship is defined up to a non zero 

scalar value and establishes a relationship between the cones {i}i=1..3 and the conic  on a,b,c. 

From (5) and (8), the matrix associated to the conic obtained cutting the cone i with a,b,c can 



6 PATTERN RECOGNITION, MANUSCRIPT PR-D-11-00798 – REVISION 1 

also be written as: 

NPMPNL iγi

T

ii

T  (9); 

as L1, L2 and L3 should be equal up to a multiplicative factor, we can write: 

NPMPNNPMPNLL

NPMPNNPMPNLL

2γ2

T

2

T

3γ3

T

3

T

23

2γ2

T

2

T

1γ1

T

1

T

21

33

11








  (10), 

where 1 and 3 are unknown multiplicative factors. Each line of (10) represents a set of nine 

non-linear equations. However, since each Li is symmetric, we have a total of twelve non-linear 

equations with five unknowns: a, b, c, 1, and 3. 

To sort out the non-linearity, we first rewrite (9) as: 

       cbadcbacbacba i

TT
 i

T

iii bbAL  (11), 

where Ai is a suitable 3x3 symmetric matrix, bi is a suitable 3x1 vector and: 

iγi

T

i vMvid
 

(12), 

with vi=-KiRi
Tti (cf. (1)). Eq. (11) is therefore the sum of one constant, one linear term in [a, b, c] 

and a quadratic one. 

We choose now the reference frame in E3 such that the projection center of the second camera 

lies in the origin. This implies that t2=[0 0 0]T and, therefore, d2=0 and P2 = [2|0]. With this 

choice, the product of matrix P2N in (9) gives:  

   2
3

22 Π
I

ΠNP 









cba

T
000|  (13), 

which does not depend on a, b, c. Therefore, L2 can be re-written as: 

2ΠMΠL
2γ

T

22   (14) 
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and it can be computed from the coefficients of the conic observed by the second camera and 

from the projection matrix of the same camera. With this choice, the right members of (10) do 

not contain anymore the unknowns a, b, c. Combining equations (10) we can now eliminate the 

non-linear terms appearing on the left side. In particular, we consider the following 

combination of (10):  

  231 LLL 311313  dddd   (15). 

Substituting (11) into (15), we get: 

 

      2311

2

T

3

1

T

11

LAAbb

LbbA

bbA

31131331113313

31133331

13

)(

c

b

a

c

b

a

c

b

a

d

c

b

a

c

b

a

+

c

b

a

+

c

b

a

d

c

b

a

c

b

a

+

c

b

a

+





ddddbdbddd

ddd

d

TT

T

TT

TT




















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


































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










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
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
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
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
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
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
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



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







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





























 (16). 

Eq. (16) is constituted of nine linear equations, in the five unknowns a, b, c, 1 and 3. 

However, as both the right and left sides of (16) are constituted by a 3x3 symmetric matrix, 

there are only six independent equations. 

Notice that the 6x5 matrix E associated to the linear system (16) is not of maximal rank, as the 

columns of 1 and 3 are linearly dependent. However, for a general choice of the positions of 

the cameras and of the conic, one has rank(E) = 4. To show this it is enough to prove that 

rank(E) = 4 for a particular choice of the set up, and this indeed occurs in all the examples we 

have considered; in fact, for a general principle in algebraic geometry,  either rank(E)<4 occurs 

for every choice, or only for some particular configurations.  In other words, in the space  
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parametrizing all configurations of cameras and conics, those which correspond to rank(E)<4 

are a subvariety whose dimension is less than that of .   

 

Fig. 1. Panel (a) shows one of the images used for validation. Panel (b) shows the points sampled over the ellipse in panel (a) and the 

fitted ellipse for the same image. Panel (c) represents the HT of the points on the intersecting segments for the same image; two local 

maxima are highlighted by circles. In panel (d), the points associated to the first line are depicted in green, those to the second one in 

cyan, whereas magenta points are not classified to any of the two; the lines identified by HT are represented as black, dashed lines 

[(, ) = (26 pixel, 58°), (, ) = (86 pixel, -32°)], whereas the continuous lines are those identified by the proposed algorithm 

[(, ) = (25.48 pixel, 58.99°), (, ) = (86.73pixel, -31.62°)]. Panels (e) and (f) are zooms of the rectangles A and B in panel (d); 

they highlight the difference between the lines estimated with the HT and the proposed method. 
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To estimate a, b, c, 1 and 3 the system (16) is solved through the More-Penrose 

pseudoinverse. Resorting to the pseudoinverse is actually necessary, as the matrix of the linear 

system (16) has rank four. The null space of the linear system is composed by a vector with null 

components associated to the unknowns a, b and c, and non null components for 1 and 3.   

We remark that the parametric representation of a,b,c given in (2) does not allow 

representing the planes through the origin. Therefore, all the 3D planes that pass through the 

center of the second camera cannot be determined (cf. Fig. 7). Notice, however, that this issue is 

easil solved moving the origin of the reference system to a different camera.  

3.2 Application of the proposed method to pairs of intersecting lines 

The method described in 3.1 can be applied to any kind of conic . In particular, no 

assumption has been made on the rank of the matrix L representing  in a,b,c. The approach 

can therefore be applied also to pairs of lines that can be interpreted as a degenerate form of 

hyperbola [14]. Representing each line in homogenous coordinates and in polar form, the 

equation of a degenerate hyperbola is: 

          0322221311211  ysycyysycy   (17), 

where c(.) and s(.) indicate respectively cos(.) and sin(.), the parameters (i, i)i=1..2 represent a 

line passing at a distance i from the origin at an angle /2-i with respect to the x axis. This 

equation is rearranged as: 

                 
                 

         
0

2

2

2

2121212121

2121212121

2121212121

























 yyyLy
T

γ

T







sscc

sssscssc

cccssccc

 (18), 

which is a quadratic form associated to a symmetric matrix with null determinant and rank 

two. Therefore it represents a degenerate conic, and more specifically, as the discriminant is 
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positive, a degenerate hyperbola (cf. (3)). 

3.3 Traditional linear reconstruction of a plane from pairs of correspondent lines 

A more traditional approach, that will be considered in the following for comparison with the 

proposed method, is described here. Once the correspondence between lines is solved, 

estimating the pose of a,b,c becomes a linear problem [14]. In fact, for any unknown line, lk, in 

3D space, its projection lki and lkj on the i-th and j-th cameras, generates two planes ki and kj. 

The intersection of ki and kj provides the line lk in 3D space. The orientation of the plane 

containing the conic can be obtained as the cross product of the director cosines of the pair of 

intersecting 3D lines considered. This procedure is repeated for each pair of cameras and the 

final plane orientation is computed as the average orientation. The plane position is finally 

computed imposing that the plane passes through the 3D point given by the triangulation of the 

intersection point of the pair of lines on each camera.  

4 CONICS FITTING 

In this paragraph, we describe first how to fit an ellipse to a set of N points, {pj = (xj, yj)}j=1..N, 

measured on the image plane of a camera, but the same method could be used without 

modifications to fit hyperbolas or parabolas. Notice, however, that these conics are less 

frequently encountered in a real scenario, and therefore they have not been considered here. 

Although the methodology is well known [15, 16, 19], the procedure is reported here for sake of 

completeness. We then describe the method that we have developed for robust fitting of 

intersecting lines. In both cases, we assume that points are measured on a calibrated camera and 

that lens distortion has been adequately corrected by a proper distortion model, whose 

parameters have been estimated during the calibration phase. 
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4.1 Ellipse fitting 

We indicate with the vector e=[e1, e2, …, e6]T the ellipse of equation  

e1x2+e2xy+e3y2+e4x+e5y+e6 = 0. Once e has been fixed, the algebraic error of the measured j-

th point pj is given by e1xj2+e2xjyj+e3yj2+e4xj+e5yj+e6. Considering the entire set of points, the 

total algebraic error can be written as: 

AeAe
TTE   (19), 

where A is a Nx6 matrix, whose j-th row is [xj2, xjyj, yj2, xj, yj, 1]. Minimizing E with respect to e 

allows estimating the ellipse coefficients. Nevertheless, to avoid the trivial solution e = 0, the 

parameter vector e has to be constrained; accordingly to the LIN algorithm [15], we use the 

constraint ||e||2=1. The resulting constrained minimization problem is formulated using the 

the Lagrange multipliers which leads to the minimization of the following Lagrangian function: 

 1 eeAeAe
TTTL   (20) 

instead of (19). Setting the derivatives of L with respect to e and equal to zero, we get: 









01

022

ee

eAeAe

T

T

L

L




 (21), 

Eq. (21) highlights that a solution e is an eigenvector of the matrix ATA. More specifically, six 

eigenvectors of ATA can be computed. Since we do not constrain the conic to any specific type, 

each eigenvector can represent an ellipse, a hyperbola or a parabola, depending on the value 

assumed by =e22-4e1e2. The eigenvector representing the best fitting ellipse is that associated to 

the smallest absolute eigenvalue, among all the solutions characterized by =e22-4e1e3 < 0. 

To obtain a numerically more stable result, as suggested in [16], the coordinates of the ellipse 

points are normalized before computing e; the points are shifted such that their barycenter is 
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coincident with the origin of the reference system and a scale factor is applied such that the 

mean distance of the points from the origin is equal to 2. Ellipse fitting is performed on these 

normalized data and the true coefficients are obtained applying the inverse scale factor and 

shift. From the vector e, the matrix of the ellipse is then obtained as: 

 



















652

532

421

22

22

22

eee

eee

eee

L  (22). 

A typical example of fitted ellipse is shown in Fig. 1. 

4.2 Fitting pairs of straight lines 

A traditional approach for identifying set of lines in an image is based on the Hough 

transform (HT) [17]. This is a 2D discretized accumulation space, where the i-th cell with 

coordinates (i, i) represents the line xc(i)+ys(i)=i. The HT is computed from the set of 

points, extracted from an image, that belong to any of the lines. The value contained in each cell 

is initialized to zero and for each extracted point, all the cells representing a line passing 

through that point are increased by one. After all the points have been considered, the local 

maxima of the HT indicate the lines in the image (Fig. 1c). HT usually produces a reliable 

estimate of the lines whose parameters are determined with an accuracy which depends on the 

cells size. When these are large, like in Fig. 1c, local maxima of the HT can be easily identified; 

however the parameters accuracy is not sufficient for high accuracy measurements. If the cell 

size decreases, the HT tends to become sparse and noisy and the identification of the local 

maxima problematic. Moreover, also the computational cost increases. For this reason, HT is 

used here only to compute approximately the position of the pairs of intersecting lines.  

On the other hand, a highly accurate estimate of the polar coordinates (, ) of a line through 
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a set of points can be obtained through total least squares (also known as orthogonal or Deming 

regression). However, this approach computes with high accuracy the parameters of a single line 

but it cannot estimate the parameters of two lines together. To overcome this problem, we have 

adopted the following three steps procedure. First, we use the HT to identify the two lines with 

an angular and spatial resolution of 1° and 1 pixel respectively. Then, we assign each point 

{pj}j=1..N either to the first line or to the second one or to none of them, depending on the 

distance of pi from the two lines deteremined through the HT. Critical pixels close (less than ten 

pixels in the present case) to the intersection of the two lines are not assigned to any of them 

(Fig. 1d). Notice that the classification induced by this method did always provide a correct 

classification of the data during the validation of the method. In the third phase, we accurately 

estimate the parameters of each line considering only the subset of points assigned to it through 

total least squares.  Lastly the matrix of the degenerate conic is derived as described in 3.2. A 

typical result is shown in Fig. 1d-f. In Appendix A, we show how the total least squares estimate 

of the line parameters (, ) can be computed in closed form through algebraic manipulation. 

5. RESULTS ON REAL DATA 

We have extensively tested the method with a trinocular system composed of three Basler 

A601f B&W cameras, 656x491 pixels @8bpp, equipped with 8mm lens, externally triggered. A 

ring illuminator of red leds was mounted around the lens of each camera to increase the overall 

contrast making image binarization more robust. The three cameras looked approximately at 

the point [0mm 0mm 700mm] and were disposed as shown in Fig. 2a. Each camera was 

calibrated through the Zhang method implemented in Matlab [18]. To this aim, 33 images of a 

7x5 chessboard of 140mm x 200mm, with a random pose in 3D space, were acquired by the 
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three cameras. The standard deviation of the projection error never exceeded 0.06 pixels for 

each camera, with a maximum error of 0.25 pixels. The registration error was of the same order 

of magnitude. 

 

 

Fig. 2. In panel (a), the acquisition system used for validation is shown. Panel (b) shows the set-up used in simulation. The 

cameras projection center, in mm, is respectively [-474, -310, 230], [0, 0, 0] and [511 -310 230]. The cameras look 

respectively at the points [-50, 0, 700], [0, 0, 700] and [-50, 0, 750] and have a normalized focal length of 800 pixels. 

 

To validate the method an ad hoc, high precision mechanical system could be used to 

position the plane with sufficiently high accuracy and obtain the ground truth poses. However, 

this solution would be too costly and we have resorted to an indirect estimate as the best fitting 

plane of a redundant set of fiducial markers coplanar with the plane acquired with the same 

trinocular system.  

A set of patterns was printed on an A4 sheet, stitched to a thick wooden plane (Fig. 1a). These 

were: an ellipse with axis lengths of 178mm and 109mm and line thickness of 5mm; two 

orthogonal segments of length 159mm and 97mm, thickness of 5mm; eight pairs of squares 

(fiducial markers) of 17mm x 17mm, placed on the perimeter of a rectangle of 243mm x 167mm. 

The ellipse center, the intersection of the two segments and the barycenter of the fiducial 
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markers were coincident. 

We moved randomly the wooden plane inside the working volume, acquiring triplets of 

images at 1Hz. After discarding all the frames in which the patterns were not completely visible 

to all cameras, a total of 140 triplets of images were obtained for the analysis. The Harris corner 

detector was used to identify the accurate 2D position of the fiducial markers and their 3D 

position was computed through standard triangulation [14]. For each pose, the ground truth 

plane was computed from the Principal Component Analysis (PCA) of the 3D position of the 

eight fiducial markers. The average distance of the fiducial markers from the estimated plane, 

measured over the 140 frames, was 0.06mm with a maximum error of 0.32mm.  

To determine the plane orientations with the proposed method, we first identified the area 

delimited by the fiducial markers and binarized it through the threshold set by the Otsu 

procedure. The pixels of the resulting largest connected component belong to the ellipse, 

whereas those of the second largest connected component to the pairs of intersecting segments. 

The mean number of pixels of the ellipse was 1935 ± 339, whereas that of the two segments was 

1064 ± 185. Fig. 1 shows a typical example of the identified sets of points. A conic was fitted to 

these sets of points according to the procedure described in Section 4 and the plane containing 

the conic determined with the procedure described in Section 3.  

The accuracy of the proposed algorithm was compared with the non-linear  method of Quan 

described in [1], which allows estimating the pose of a plane when two cameras observe the 

same conic in 3D space. Quan’s method was applied here to each of the three pairs of cameras 

that were available in our trinocular system. The pose estimate was averaged over all the pairs 

to compare the results with those provided by the method described here. We remark that 

Quan’s method could not be applied to pairs of lines, since in this case, all the quadrics of the 
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Quan's pencil are singular, hence the determinants of the associated matrices are identically 

zero, and a 0/0 division is obtained. When pairs of lines were considered, results for the 

proposed method have been compared with the procedure described in Section 3.3, that 

requires the correspondence problem to be solved in advance. 

For each method, the error on plane orientation was computed as the angle between the 

normal to the ground truth plane and that to the estimated plane. The 3D position error was 

measured as the distance between the barycenter of the eight fiducial markers and the 

estimated center of the ellipse or with the intersection point of the pair of segments. 

The measured errors for all the methods considered here are reported numerically in table I 

and graphically in Figure 3. As it can be appreciated, when the proposed algorithm is adopted, 

the error with the intersecting lines is generally larger than that obtained using ellipses. 

Moreover, the error is highly variable across trials. 

When Quan’s method is applied to one pair of cameras, its accuracy is lower than our 

method, for both plane orientation and position (not reported here). When three cameras are 

used, on the other hand, Quan’s method achieves a slightly higher accuracy with respect to the 

proposed method, although not significant from a statistical point of view.  Similar results are 

obtained for intersection lines, where the linear method in Section 3.3 is applied.  

In both cases, however, critical configurations produced very high error in few specific 

frames: for instance at frame #93 an orientation error of 111° was obtained with the method in 

Section 3.4, whereas 5% of the frames had an orientation error larger than 4° with the proposed 

method. As a result, error distribution is asymmetric and it contains outliers. For this reason, 

median and Inter Quartile Range (IQR) values have been reported in Table I. 
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TABLE I. MEDIAN AND IQR OF THE ORIENTATION AND POSITION ERRORS MEASURED OVER 140 FRAMES.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3. In panel (a), the histogram of the orientation error is plotted for the proposed method applied to ellipses and pairs of 

lines, for the Quan’s method [1] and for linear reconstruction of 3D lines, with bins of 0.04°; panel (b) shows the histogram of 

the error on plane 3D position, with bins of 0.05mm. 

6. RESULTS ON SIMULATED DATA 

To deeper investigate and validate the results obtained on real data, and to identify the 

critical configurations for the proposed, Quan’s and the linear reconstruction methods, we have 

resorted to accurately controlled simulations. We have first determined the uncertainty on the 

conics parameters induced by fitting and then investigated the effect of several set-up 

parameters on the estimate accuracy of the plane, taking into account such uncertainty.  

6.1 Error in conics fitting 

We considered a set of 420 ellipses, whose coefficients are equal to those computed in the 

validation described in Section 5 over the three cameras and points along each ellipse were 

 ERROR: PROPOSED METHOD ERROR: OTHER METHODS 
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MEDIAN 0.06 0.01 0.36 -0.08 0.04 -0.01 0.17 -0.06 

IQR 0.04 0.14 0.59 0.20 0.08 0.04 0.06 0.19 
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sampled with a constant step to obtain a number of points approximately equal to the real-case. 

A random quantity with uniform distribution in the range of -2.5 to 2.5 pixels was then added 

to each coordinate of these sampled points, to get an elliptical line with thickness of about 5 

pixels, like in the real scenario (see Fig. 1b for a visual comparison). Lastly, a zero mean 

Gaussian noise with standard deviation of 0.06 pixels was added to each point, to simulate the 

residual calibration and measurement errors. 

The fitting accuracy was quantified by the distance between the center of the true and the 

fitted ellipses, by the difference of their axes length, and by the angle between the axes of the 

true and of the fitted ellipse. These data are reported in Table II. The same procedure was 

adopted for pairs of lines; in this case, we measured the distance between the intersection of the 

true and fitted lines and the difference of orientation for each line. These quantities are also 

reported in Table II. 

 

TABLE II. MEAN ABSOLUTE VALUE (MAE) AND STANDARD DEVIATION OF THE NUMBER OF POINTS, ERROR ON THE CENTER POSITION, AXES LENGTH AND 

ORIENTATION FOR A TYPICAL SET OF 420 SIMULATED ELLIPSES AND PAIRS OF LINES USED IN SECTION 5. 

   ELLIPSES PAIRS OF LINES 

  MAE STD MAE STD 

# POINTS 1935 339 1064 185 

E
R

R
O

R
S
 

CENTER [PIXELS] 0.066 0.039 0.022 0.025 

ORIENTATION [°] 0.07 0.06 0.04 0.05 

AXES LENGTH [PIXELS] 0.082 0.062 --- --- 

 

6.2 Critical geometrical configurations for the proposed algorithm: set-up  

The set-up in Fig. 2b, similar to that used in Section 5, was used for evaluating through 

simulations the critical aspects of the proposed algorithm. The center of the working volume 
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was assumed to be P0 = [0mm 0mm 700mm]T but the cameras did not look exactly at this point 

to avoid symmetries that may hide numerical issues associated to critical configurations.  

In each simulation, the conic was positioned on a plane in 3D space and analytically 

projected through (9) onto the image plane of the three cameras, to get and . Noise was 

added to their parameters, coherently with the fitting errors reported in Table II. The conics 

and  were finally used to estimate a,b,c through the method described in Section 3, and 

the resulting pose errors was then computed. 

In each simulation, the ellipse was initially centered in P0 and it lied on a plane parallel to XY; 

its axes were set equal to 109mm and 178mm respectively. In the following, we will refer to this 

reference ellipse as e
0. Similarly we define l

0, the pair of intersecting lines intersecting in P0 at 

an angle of 90 degrees and lying on a plane parallel to XY. In the different simulations, e
0 and 


l
0 will be differently modified to investigate several geometrical aspects.  

In the first simulation, we modify the axes ratio of e
0 to assess its impact on the accuracy of 

the estimated parameters. In particular, we consider the following axes ratio: (1; 0.9; 0.75 and 

0.5) maintaining the same area of 109 x 178 π mm2. For each axes ratio, 50,000 different conics, , 

were generated rotating e
0 around the Z axis by a random angle (uniform distribution between 

0° and 360°). Each conic  was then translated by a random quantity (standard deviation of 

25mm) in X and Y directions and further rotated around two axes parallel to X and Y through 

the conic center. These rotations were distributed as a zero mean Gaussian with standard 

deviation of 10°. With the same sequence of geometrical transformations we have investigated 

the effect of the angle between the two intersecting lines on the plane estimate. Angles of 10°, 

20°, 40°, 60° and 90° (the latter is the one used in Section 5) were considered. 

In the second simulation, we have investigated how the closeness of a,b,c to the projection 



20 PATTERN RECOGNITION, MANUSCRIPT PR-D-11-00798 – REVISION 1 

center of one of the cameras influences the accuracy. To this aim, we have rotated e
0 and l

0 

around an axis parallel to the Y through P0 by an angle, , ranging from -100° to 100° with steps 

of 1°. For  = ±90° the plane was vertical and passed through the projection center of the second 

camera; for  ≈ -45° and  ≈ 43° it passed respectively through the center of the first and third 

camera. For each , 1,000 different conics  were generated from the rotated e
0 and l

0, further 

rotating it by a random angle (uniformly distributed from 0° to 360°) around an axis normal to 

a,b,c through P0. The conic was then translated inside the a,b,c plane by a random vector 

(standard deviation of 25mm in each direction) and finally projected on the cameras image 

plane. 

In the third simulation, we investigated the situation in which a,b,c passes close to the 

projection center of two cameras. To this aim, we have rotated e
0 and l

0 around an axis through 

P0  and parallel to the X axis by an angle, , from -61° to -51° with steps of 0.25°; for  ≈ - 56.5° 

the plane passed simultaneously through the center of the first and third camera.  

The fourth simulation was aimed to highlight a particular critical configuration associated to 

pairs of intersecting lines that explains the large orientation error beyond the 95th percentile 

(Table I). In this simulation, e
0 and l

0 are rotated around P0 by a small angle , such that a,b,c is 

not anymore parallel to the XY plane; we have somehow arbitrary chosen a,b,c with normal 

[0.099 0.099 0.990]. We then further rotate the conics around P0 by an angle , ranging from 0° to 

180° with steps of 1°. For each value of , 1,000 samples of  were generated translating the 

conics along a random vector inside the a,b,c plane (standard deviation of 25mm in each 

direction). 
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6.3 Critical geometrical configurations for the proposed algorithm: results 

The median and the 95th percentile of the orientation and position errors of the first 

simulation are summarized in Figs. 4. For the ellipses, the highest accuracy was obtained for an 

axes ratio equal to 1 (circles) and it decreases with the decrease of the axes ratio. For pairs of 

lines, the highest accuracy was achieved when the two lines were orthogonal and decreases 

with the decrease of their angle. This is further investigated in Figs. 5 and 6, where the 

estimated normal to the plane is projected onto the true plane. When circles are used the error 

assumes an isotropic distribution with small amplitude; with the decrease of the axes ratio the 

error tends to be elongated in the direction of the minor axis and increases in amplitude. A 

similar result is obtained for pair of lines and it is represented by the green points in Figs. 6a-e; 

in this case, the error increases when the intersection angle decreases from 90° to 10°. Fig. 6 also 

highlights that, in a significant number of cases (black points in the figure), the error is 

orthogonal to one of the two lines, thus meaning that the estimated plane is rotated around one 

of the two lines with respect to the true one. Such behavior is associated to a geometrically 

critical configuration which will be analyzed in the fourth simulation. 

The median orientation and absolute position error of the second simulation are shown in 

Fig. 7 as a function of the plane rotation,  around an axis parallel to the Y axis. Notice that the 

error is not influenced by the closeness of the plane to the center of the first or third camera as 

no peak is present for  ≈ -45°, 43°. On the other hand, when the plane is close to the center of 

the second camera, the position error increases for both ellipses and pairs of lines (see the peaks 

close to ±90°). Moreover, the error increases with  for the ellipses as these tend to be elongated 

in the view of the second camera. 

Fig. 8 refers to the third simulation: it shows the plane estimation errors for different 
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rotations, , around an axis parallel to the X axis. A peak in the error is evident when the plane 

is close to the center of camera 1 and camera 3: in this situation the orientation error decreases 

while the position error increases. Position error is expressed here through the Inter-Quartile 

Range (IQR) because its median is close to zero for any value of . IQR is typically used for 

reliable dispersion estimate for non Gaussian distributions and / or in presence of outliers as in 

this case (cf. Fig. 4). 

 

 

Fig. 4. In panel (a), the median and the 95th percentile of the orientation error are reported as a function of the ellipse axes 

ratio; in panel (b), the median position error together with the 5th and 95th percentile are shown. In panel (c), the median 

orientation error and its 95th percentile are reported as a function of the angle between the two lines of the degenerate 

hyperbola; in panel (c), the median position error together with the 5th and 95th percentile are shown. The vertical bars 

indicate the inter quartile range. 
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Fig. 9 refers to the fourth simulation. It shows the plane estimation error for different 

rotations, , of the conic around P0 and highlights some criticalities in the set-up. When the 

ellipse is used, both position and orientation errors exhibit a one period oscillation for  

increasing from 0° to 180°. This is due to the interaction between the inclination of the plane 

a,b,c with respect to the plane XY, (angle ), and the rotation angle , that change the apparent 

eccentricity of the ellipse viewed by the cameras. A similar trend is shown by the position error 

when pairs of intersecting lines are used, while the orientation error has, in this case, a 

particular behavior with six clear peaks (Fig. 9a). 

The peaks are associated to the situation in which one of the two intersecting lines gets close 

in 3D space to one of the lines that join the center of two cameras. This situation is illustrated in 

Fig. 10, where one of the two intersecting lines, K2, and the line joining camera 1 and 3, K13, 

belongs to the same plane  that contains the point of intersection of K2 and K13, Q. In this 

configuration, 1 and 3 would allow estimating the plane  but not K2 and therefore the conic 

itself. In fact, any other line in  generates the same projections onto these two cameras. By a 

geometrical point of view, adding a third camera out of  should resolve the degeneracy, but it 

does not as shown by experimental results. This is due to a degeneracy induced by algebraic 

manipulation as explained in details in the next section. Notice that this critical configuration 

occurs also when the intersection point Q lies at infinity, that is when the line K2 is parallel to 

K13. 
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Fig. 5. Panels (a)-(e) show the projection of the estimated normal to a,b,c onto the true plane, when the method in Section 3 is 

applied to ellipses with the same area, but different axes ratios. The true normal projects in [0, 0]. The dash-dotted red line 

shows the shape of the ellipse onto a,b,c (scaled by a factor 1/4000 with respect to its real size).  



I. FROSIO ET AL.: LINEAR POSE ESTIMATE FROM CORRESPONDING CONICS – R01 25 

 

Fig. 6. Panels (a)-(e) show the projection of the estimated normal to a,b,c onto the true plane, when lines intersecting with 

different angles are used. The dash-dotted red lines shows the pair of lines ontoa,b,c (not in scale). The black points are 

associated to geometrical configurations close to the critical condition illustrated in Fig. 10: the angle between the line K2 and 

the plane  shown in Fig. 10, is smaller than 15° for all the black points, whereas it is larger than 15° for the green ones. 
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Fig. 7. In panel (a), the median orientation error for ellipses and pairs of lines is shown as a function of the rotation angle, , 

around an axis parallel to the Y axis. The vertical arrows indicate the angles for which the plane contains the projection 

center of one of the cameras. Panel (b) shows the median absolute position error. 

 

 

Fig. 8. In panel (a), the median orientation error for ellipses and pairs of lines is shown as a function of the rotation angle, , 

around the X axis. For ~ -56.5° the plane contains the center of the first and third camera. In panel (b), the IQR of the 

absolute position error is shown for the same geometrical configuration. 

   



I. FROSIO ET AL.: LINEAR POSE ESTIMATE FROM CORRESPONDING CONICS – R01 27 

 

Fig. 9. In panel (a), the median orientation error is shown as a function of the rotation, , around the conics center. Panel (b) 

shows the median absolute position error. 

 

 

Fig. 10. Schematic representation of a critical geometrical configuration for the pairs of lines, K1 and K2, that belong to the 

plane a,b,c. The line K2 intersects in Q the line K13, through the center of the first and third camera.  K13, and Q belong to 

while K1, in general, does not. 

6.4 Critical geometrical configurations for Quan’s algorithm 

The critical configurations alredy identified for the proposed algorithm in case of ellipses are also 

critical for Quan’s algorithm. These occur each time a,b,c includes the center of one or more cameras. 

In this case, the projection of the conic onto the camera image plane degenerates into a segment and 

the plane orientation cannot be derived. With respect to  the proposed method, Quan’s algorithm 
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suffers from an additional critical configuration, that occurs when the center of one camera lies on the 

surface of the cone associated to the observed conic on the other camera. In this case, a zero by zero 

division occurs and the estimate of the conic plane becomes unfeasible. 

 

Fig. 11. In panel (a), the median orientation error for the proposed method and for the Quan procedure[1], is shown as a 

function of the Y coordinate of the third camera. Panel (b) shows the median absolute position error. 

 

We have verified this with an ad-hoc simulation. We moved the third camera to the position [-

100mm -100mm 1400mm] in the set-up described in section 6.2 and translate the camera by steps of 

2.5mm along the Y direction. For each position, we have generated 100 ellipses, in 3D space passing 

through the point [0mm 0mm 700mm] with a random orientation. The critical geometrical 

configuration described above occurs when Y = 0. For each position,  was analytically projected 

through (9) onto the image plane of the three cameras, to get and . Noise was added to their 

parameters, coherently with the fitting errors reported in Table II. The conics and  were finally 

used to estimate a,b,c through the method described in Section 3 and through [1]. 

Fig. 11 reports the median orientation error and the median absolute position error as a function of 

the Y coordinate of the third camera. It can be observed that Quan’s method looses accuracy in the 

range -30mm < Y < +30mm (in this range the median orientation error is higher than 1° and the 
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median absolute position error is higher than 1mm). The proposed method, on the contrary, maintains 

the same good accuracy also for values of Y inside this range.  

6.5 Critical geometrical configurations for the linear reconstruction from lines pairs 

Also the linear procedure in Section 3.4 presents a critical geometrical configuration that is not 

shared by our method. This occurs when the planes ki and  kj, associated to the lines lki and lkj 

observed by the i-th and j-th cameras, are almost parallel. In this situation, the intersection between the 

two planes varies significantly for small errors in the estimate of l1 or l2, and the estimate of the 

orientation of the 3D plane becomes consequently inaccurate.  In practice, when two cameras observe 

a 3D line lk and the center of the two cameras are almost coplanar to it, the orientation of lk cannot be 

estimated accurately. On the other side, using linear pairs of lines, produces a smaller error in all the 

other configurations reported in Section 6. However, correct matching between the lines should be 

available in advance.  

7. DISCUSSION 

The approach presented here constitutes a unified framework to estimate the pose of a plane 

in 3D space from a set of projections of a conic or of a pair of intersecting lines, that lie on the 

plane. No a-priori knowledge on the conics parameters or any initialization is required. 

Although the method can be appliedwithouth modifications to any kind of conics, including 

hyperbola and parabola, we have  considered here only ellipses and intersecting lines, that are 

frequently encountered in real scenarios. 

The method is based on solving a linear system composed of six equations in five unknowns. 

This could be further simplified to six equations in four unknowns, substituting the term d31-

d13 with a single unknown, or even further reduced to three equations in three unknowns. 
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However, in these cases, the norm of the coefficient matrix becomes close to singularity and the 

estimate becomes unstable. This has been verified through simulations and therefore further 

simplification of (16) was avoided. 

Experimental results (Table I) show that ellipses provide a more accurate estimate of the 

orientation of a,b,c than intersecting lines, in spite of a more accurate 2D fitting (Table II). 

Ellipses incorporate more information about plane orientation than pairs of lines, possibly 

because all directions are represented by the points on the ellipse perimeter while only two 

directions are represented by pairs of lines. Figs. 4a, 4b and 6 demonstrate that less eccentric 

ellipses produce a more accurate estimate of a,b,c orientation than highly eccentric ones. This 

can be explained by two concurrent factors. First, projecting a highly eccentric ellipse at small 

angles produces an ellipse, that is generally harder to fit [15], [16]. Moreover, the 2D area in 

which the 2D points are distributed shrinks in one direction making more difficult to estimate 

the orientation around an axis orthogonal to that direction. This is clearly shown in Figs. 5, 

where the orientation error is mainly distributed along the minor axis of the ellipse, whereas the 

maximum accuracy is achieved for rotations around its minor axis. Similar considerations apply 

also to intersecting lines: when the lines are orthogonal each other, the error distribution is 

isotropic (green points in Fig. 6a), whereas it becomes anisotropic for small intersection angles 

(green points in Fig. 6e). 

The method presented here has the advantage of linearity with respect to Quan’s method. 

Moreover, it does not suffer from the criticial configuration identified in Section 6.4. 

A few geometrical configurations have to be avoided when intersecting lines are considered 

to derive the plane orientation through the proposed method. These are characterized by one of 

the two intersecting lines cutting the line through the projection centers of two of the three 
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cameras (as in Fig. 10). Although by a geometrical point of view such configuration is not 

critical, we have verified that, in this case, the left term of the linear combination in (16) is a 

matrix, whose associated conic is broken into the projections of K1 and K2 onto the plane of 

camera 2, but the factor corresponding to K1 does not depend on a,b,c. As a consequence, the 

proposed method can reconstruct only K2; in fact the matrix of the linear system (16), in this 

case, has rank 3, and the solutions correspond to a pencil of planes passing through K2. This 

explains also why the estimate of the plane position is correct in this case (see Fig. 9b): as each 

plane of the pencil passes through K2, it also necessarily passes through O and the position 

error is consequently low. Similarly, when the line K2 is coplanar with the center of the cameras 

1 and 2 (or 2 and 3) the solution of (16) corresponds to a pencil of planes through K1 and the 

conclusion is similar. 

We observe also that, when a,b,c contains the center of the first and third camera, the rank of 

the matrix associated to the linear system (16) is reduced to 3 for ellipses and 1 for pairs of lines. 

The reduced rank is explained with the fact that two of the three projections of  degenerate into 

a segment, and therefore they include little information about the conic shape. Despite of this, 

simulations (Fig. 8) demonstrate that the algorithm provides a reliable estimate of the plane 

parameters. This can be explained observing that, when the plane of the conic passes through 

the center of one camera, the conic projection degenerates into a segment and that camera 

should be sufficient by itself to correctly identify a,b,c. By an algebraic point of view, this means 

that cancellation of significant terms in (15) does not occur in this case.  

The method achieves a slightly lower accuracy with respect to linear reconstruction, but it has 

the advantage of not requiring to solve the correspondence problem before.  

We remark here that a derivation similar to that of the proposed method is reported in [13]. 
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However, it was devoted to the estimate of only 3D ellipsoids and no analysis of critical 

configurations was reported.  

To derive optimal pose estimate of the plane, some effort has been made to make conics 

fitting most accurate.  Although conic fitting and line fitting have received great attention [15], 

[16], no algorithm was developed specifically tailored for fitting intersecting lines. The two 

steps algorithm described here, thanks to the specific representation of the lines, allows using 

an algebraic approach to implement a geometrical minimization, that is known to be more 

accurate with respect to the algebraic one [15]. This is clearly shown by the fitting error reported 

in Table II that is lower for pairs of lines in spite of the lower number of 2D points used in the 

estimate (about a half). 

The proposed method was applied to the case of three cameras. However it can be extended, 

without any significant modification, to any arbitrary number of cameras higher that three. 

Each additional camera adds six equations and only one unknown to (16). This increases the 

accuracy and reduces the possibility of critical configurations. 

8 CONCLUSION 

In this paper, we proposed a method for determining the pose of a plane containing a conic, 

observed by at least three calibrated cameras, solving a linear system of six equations in five 

unknowns. Experimental and theoretical analysis has highlighted few geometrical degenerate 

configurations that do not allow estimating correctly the pose.  

APPENDIX A 

The (, ) parameters of a line in polar form can be estimated, from a set of points {pj = [xj, 
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yj]T}j=1..N, minimizing the squared algebraic error, which is defined as: 

 



Nj

jj yxF
..1

2
coscos½    (A1). 

Notice that the distance of the point pj from the line xcos()+ysin()= is given by the 

projection of the vector [xj, yj]T-[cos(), sin()]T over the direction [cos(),sin()]T, which 

leads to: 

     sincossincossincos jj

T

jj yxyx  (A2). 

Comparing (A1) and (A2), we notice that the squared algebraic error corresponds exactly to 

the sum of the squared distances of the points from the line. Minimizing (A1) leads therefore to 

the total least square estimate of the line. 

The stationary points of F are identified posing F/ = 0 and F/ = 0; the first condition 

leads to: 

 sincos0 ** yxF   (A3), 

where p* = [x*, y*]T is the barycenter of the set of points. In practice, (A3) highlights that the 

fitted line will pass through p*. Substituting (A3) into F/ = 0 we obtain: 
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 (A4); 

dividing then by cos2(), we obtain a second degree equation in tan(): 

   
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 (A5). 

The values assumed by  in the two stationary points of F are given by: 
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 (A6). 

Note that, using the atan2 function, it is not necessary to suppose that cos2() differs from 

zero: the estimate is in fact correct even when the fitted line is horizontal (that is, = ±90°). 

Once the two values of  have been estimated though (A6), the corresponding values of  are 

computed from (A3). The two lines identified by these parameters are orthogonal each other; 

one of them minimizes F, whereas the other one maximizes it. The total least squares line is 

found computing directly F as in (A1) for both the lines, and selecting the one associated to the 

smallest value of F. 
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