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Abstract: We calculate the optical forces on Au and Ag nanospheres
through a procedure based on the Maxwell stress tensor. We compare the
theoretical and experimental force constants obtained for gold and silver
nanospheres finding good agreement for all particles with r < 80nm. The
trapping of the larger particles recently demonstrated in experiments is not
foreseen by our purely electromagnetic theory based on fixed dielectric
properties. Since the laser power produces a heating that may be large for
the largest spheres, we propose a model in which the latter particles are
surrounded by a steam bubble. This model foresees the trapping of these
particles and the results turn out to be in reasonable agreement with the
experimental data.
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1. Introduction

Optical tweezers [1] are a well established laboratory tool to trap and manipulate microsized
and nanosized particles [2, 3]. Nevertheless, theoretical calculations are necessary for an in-
terpretation of the experimental findings, especially in the case of nanosized metal spheres
whose trapping is strongly influenced by plasmon enhancement [4]. Optical trapping of metal
nanoparticles has been widely investigated experimentally since Svoboda and Block [5] stably
trapped Au nanospheres. On the other hand, a careful theoretical modeling and a quantitative
comparison with experiment is still lacking. Recently, a few experimental papers reported quan-
titative force measurements on optical trapping of Au and Ag particles [6, 7], but some of their
findings are not easily explained in the framework of the customary dipole approximation [4].
Measuring the trapping force constants for metal nanoparticles is a rather hard task, although
the plasmon resonances enhance the radiation force [4], because the effect of higher order plas-
mons increases when larger and larger particles are considered. Moreover, optical trapping of
dielectric particles requires a few milliwatts of laser power whereas metal particles may require
higher powers of the order of 100 milliwatts and more [6, 7, 8]. Using such a comparatively
large power may bias the measurements of the force constants, because of the consequent heat-
ing both of the particles and of the surrounding medium [8] and possibly because of the change
of the relative refractive index of the particles due to the large field intensity [9].

In the present paper we calculate the optical forces on gold and silver nanospheres with the
purpose of checking up to what size our theoretical approach foresees the trapping of spheri-
cal particles of the noble metals mentioned above. For our investigation we exploit the theory
that we recently developed and successfully applied to the calculation of the optical forces
on dielectric spheres [10, 11] as well as of the torques exerted on model elongated dielectric
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nanostructures [12]. In principle, our theory could be applied also to elongated metallic nanos-
tructures such as those trapped by Selhuber-Unkel et al. [13]. However, we defer this task for
future work because also the interpretation of the experiments for much simpler systems, such
as spherical metallic particles, presents a hunk of problems that will become evident later. Our
theory is based on the expansion of the field in a series of vector multipole fields and on the
imposition of the customary boundary conditions across the surface of the particles. Then, we
do not resort to the typical separation of the optical force into a gradient and a scattering con-
tribution, but make full use of the formalism based on the Maxwell stress tensor, in the form
of Minkowski, as given, e.g., by Jackson [14]. This approach does not require the particles to
be small or homogeneous whereas the customary separation into scattering and gradient force
requires the particles to be small with respect to the wavelength and that their absorptivity be
small [4].

The paper is organized as follows: in Sec. 2 we give a sketch of the main formulas on which
the calculations are based (see also [10, 11] for more details), in order to give a better insight
into our results on metal nanoparticles, that are fully discussed in Sec. 3.

2. Sketch of the theory

The geometry that we adopt to calculate the radiation force exerted by a focalized laser beam
on a particle is sketched in Fig. 1. The center of mass of the particle is located at RO′ with
respect to a cartesian frame of reference whose origin O coincides with the nominal focus F of
the lens and whose z axis marks the direction of propagation of the beam. The radiation force
can be written as [14]

FRad = r′2
∫

Ω′
r̂′ · 〈TM〉dΩ′ , (1)

where r′ is the radius of a large spherical surface surrounding the particle and TM is the time
averaged Maxwell stress tensor

TM =
1

8π
[
n2E′ ⊗E′∗ +B′ ⊗B′∗ − 1

2

(
n2E′ ·E′∗ +B′ ·B′∗)I] .

Fig. 1. Sketch of the trapping geometry. The particle is located at RO′ with respect to a
cartesian frame of reference whose origin O coincides with the nominal focus F of the
lens.
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In the definition above n is the refractive index of the medium that embeds the particle, ⊗
denotes dyadic product, and I is the unit dyadic. The fields E′ and B′ are considered in a frame
of reference with origin at RO′ and are the superposition of the incident radiation field and of
the field scattered by the particle.

We start by considering the incident field to be a simple plane wave of amplitude E′
0 and

(circular) frequency ω , and by expanding all the fields in a series of spherical vector multipole
fields we are able to write the component of the radiation force along a direction characterized
by the unit vector v̂ζ as

FRadζ = −F(Sca)
Radζ +F(Ext)

Radζ , (2)

where

F(Sca)
Radζ =

2|E ′
0|2

16πk2
v

Re ∑
plm

∑
p′l′m′

A(p)∗
lm A(p′)

l′m′ i
l−l′I(pp′)

ζ lml′m′ , (3a)

F(Ext)
Radζ = −2|E ′

0|2
16πk2

v
Re ∑

plm
∑

p′l′m′
W (p)∗

I lm A(p′)
l′m′ i

l−l′I(pp′)
ζ lml′m′ . (3b)

In Eqs. (3) the multipole amplitudes of the incident field W (p)∗
I lm are known [10], and those

of the scattered field A(p)
lm can be calculated, e.g., by solving the linear system of equations

that describes the boundary conditions [15]. The quantities I(pp′)
ζ lml′m′ are integrals that can be

calculated in closed form [10, 11]. kv = ω/c, where c is the speed of light.
Even in our approach the radiation force has been separated into two contributions, but there

is no similarity with the customary separation into a field gradient contribution and a scatte-
ring contribution. The separation effected in Eqs. (3a) and (3b) can be tracked back to Eq. (1)
which, due to the structure of the Maxwell stress tensor, includes |E′

S|2 and E′∗
I ·E′

S as well as
the corresponding terms from the magnetic field. When these terms are expanded as a series

of multipole fields we just get F(Sca)
Radζ , that depends on the multipole amplitudes of the scat-

tered field, and F(Ext)
Radζ that depends on the multipole amplitudes both of the incident and of the

scattered fields. As a result, F(Sca)
Radζ and F(Ext)

Radζ can be somehow related to the scattering and to
the extinction cross section of the particle, respectively, and the radiation force can loosely be
related to the absorption cross section, i.e., to the absorptivity of the particle. Note that simi-
lar considerations hold true also for the radiation torque [16, 17]: in particular for a spherical
scatterer the torque exerted by an elliptically polarized plane wave can be explicitly written in
terms of the difference of the extinction and of the scattering cross section [18].

Now, let the incident field be not a single plane wave but a focused laser beam. Equations
(3a) and (3b) still apply provided the following substitutions are introduced [10]

E ′
0W

(p)
Ilm → W

(p)
lm (RO′) , E ′

0A(p)
lm → A

(p)
lm ,

where the quantities W
(p)

lm (RO′) are the amplitudes of the incident laser field and A
(p)

lm are the
corresponding amplitudes of the scattered field. The explicit formulas for the calculation of
these amplitudes are reported in [10]. Instead here we want to remark some features of our
approach that are crucial for the discussion on metal particles in Sec. 3.

• First, Eqs. (3a) and (3b) do not require the particles to be small or homogeneous. Large
particles, even of high absorptivity, can be dealt with by these equations. The case of
radially inhomogeneous spheres, e.g., layered spheres, can also be dealt without any
difficulty.

#108098 - $15.00 USD Received 26 Feb 2009; revised 8 May 2009; accepted 3 Jun 2009; published 4 Jun 2009

(C) 2009 OSA 8 June 2009 / Vol. 17,  No. 12 / OPTICS EXPRESS  10234



• Second, we shall see later that the relative magnitude of the contributions of Eqs. (3a) and
(3b) depends on the radius of the particles and plays a fundamental role in determining
the trapping.

• Third, the force calculated through Eqs. (3a) and (3b) is a linear function of the laser
power, as is expected from any purely electromagnetic theory of the trapping forces.
However, when interpreting the results of any experiment, one should consider that using
a large electromagnetic power may alter the parameters of the model, such as, e.g., the
refractive index or the very geometry of the particles subject to the force.

3. Results and discussion

A critical point in the calculation of the radiation force, whatever the approach one chooses to
use, is the knowledge of the dielectric properties of the particles. In the present paper we com-
pare our calculations with the experimental findings of Hansen et al. [6] and of Bosanac et al.
[7], that were obtained at λ = 1064 nm. Therefore, we chose, both for Au and Ag nanospheres,
the dielectric function tabulated by Johnson and Christy [19], whose use leads to a good agree-
ment between calculated and experimental extinction spectra of such nanoparticles. In Fig. 2
we report these calculated extinction cross sections of Au and Ag nanospheres of various sizes.
The main feature of both metals is the structure of the plasmon resonances whose position and
complexity depends on the radius of the particles. We also notice that at λ = 1064nm both
Au particles with r = 77nm and Ag particles with r = 80nm still show a large extinction in
comparison with particles of smaller radius.
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Fig. 2. Extinction cross section of Au (left) and Ag (right) spheres. The refractive index is
the one tabulated by Johnson and Christy [19].

The other parameters that we adopt in our calculations are those of Hansen et al. for Au par-
ticles and of Bosanac et al. for Ag particles. Thus, we assume an optical system with numerical
aperture NA=1.2 in water illuminated by a x-polarized TEM00 laser beam. Since both in [6] and
[7] the objective has been only slightly overfilled, we chose the filling factor f0 = 2 according
to the common choice reported in the literature [4, 10, 20]. We also consider the case of an oil
immersion lens, and consequently change the numerical aperture to NA=1.32. However, we did
not compensate for the spherical aberration by using oils of different refractive indexes [21]. In
fact, we use noil = 1.54 and consider several values of dw, the distance from the nominal focus
of the cover slip that separates oil from water, as in all cases the particles are embedded in wa-
ter. According to Hansen et al. [6], the effect of the aberration produced by the presence of the
cover slip can be minimized by locating the latter as near as possible to the trapping volume. On
the other hand, in [6] it is stressed that the effect of the aberration is to reduce the maximum size
of the trappable particles and that the best results are obtained using a water immersion lens.
Since trapping particles of different size require different powers of the laser beam, in [6, 7] the
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Fig. 3. Experimental (from [6]) and calculated stiffness κz/P and κx/P in pN/(nm ·W) for
gold spheres, both for water immersion (red line and points) and for oil immersion lens
(blue lines and points). The points marked by an arrow refer to particles embedded into a
steam bubble.
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Fig. 4. Experimental (from [7]) and calculated stiffness κz/P and κx/P in pN/(nm ·W) for
silver spheres, both for water immersion (red lines and points) and for oil immersion lens
(blue lines and points). The points marked by an arrow refer to particles embedded into a
steam bubble.

experimental stiffnesses of the trap are normalized to the laser power P. Our calculated κz/P
and κx/P vs. the size of the spheres for Au particles are reported in Fig. 3 together with the
experimental data of Hansen et al. [6], whereas the results for Ag spheres are reported in Fig.
4 together with the experimental findings of Bosanac et al. [7]. Figures 3 and 4 also include
some points that are marked by an arrow: these points will be discussed later. At present, we
see at once that we do not succeed in the trapping of spheres with r > 77nm, whereas Hansen
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et al. and Bosanac et al. were able to trap Au spheres with r up to 127nm and Ag spheres with
r up to 137.5nm, respectively. Nevertheless, in [6] the authors stress that they were unable to
get stable trapping of Au spheres with r = 77nm, whereas Bosanac et al. [7] notice that their
measured stiffnesses for Ag spheres with r = 80nm are much lower than expected. In a sense,
this is not surprising, because the experimental measurements include all effects, linear and
nonlinear, yielded by the radiation field with scarce or no possibility of discrimination. On the
other hand, our calculations are performed for fixed parameters of the model, i.e., fixed radius
and refractive index of the particles, and fixed refractive index of the surrounding medium.

Hansen et al. report their measured κz/P for the nonaberrated setup only, but our calculated
curves for nonaberrated and aberrated setup, provided −6 μm ≤ dw ≤ −2 μm, are almost in-
distinguishable from each other and show a good agreement with the experimental data up to
radii at which trapping is predicted by the theory. A good agreement is also attained in Fig.
4 for κz/P of Ag, although our results are an order of magnitude lower than the experimental
data. Our results for κx/P in Figs. 3 and 4 show that the calculated curves for nonaberrated
and aberrated setup are quite superposable, and agree rather well with the experimental data
for the nonaberrated setup. In fact, the experimental data of Au for aberrated and nonaberrated
setup show strong differences. We believe that this is due to experimental difficulties in the
power normalization when using oil immersion objectives. At the same time, we note that the
experimental κx/P for Ag particles show a negligible dependence on the setup, because of the
optimization criterion of Reihani et al. [21].

In Figs. 3 and 4 a clear size scaling is evident for small radii. The optical trapping stiffnesses
lie on mutually parallel lines with slope 3 on a log-log scale, thus showing the existence of a
scaling law with the volume of the particle. The fact that our calculated results change their
slope for radii larger that 50 nm suggests the transition from a proportionality to the volume to
a dependence on some other feature. Indeed, in the range of radii between 70 and 80 nm there
occur a change in the trapping regime. In order to understand the mechanism of this change we
first studied the behavior of the radiation force for different values of dw, i.e., when aberration
can play a significant role in degrading the trapping in the axial direction. We report the results
of our study in graphical form for Au spheres only, since the results for Ag spheres are quite
similar. Thus, in Fig. 5 (left) we report the z component of the trapping efficiency Qz for Au
spheres with r = 25nm. Let us recall that the definition of Qz is

Qz = FRadz
c

nP
.

The trapping occurs when the trapping efficiency vanishes with a negative derivative, and ac-
cording to Fig. 5 (left) this occurs for aberrated (dw 	= 0) and nonaberrated (dw = 0) configura-
tion. In particular, the trapping occurs almost at the nominal focus for nonaberrated configura-
tion with the largest value of the stiffness κz. When we go to consider spheres with r = 77nm,
Fig. 5 (right), we see at once that the trapping is almost nonoccurring for the aberrated con-
figurations whereas it only occurs, but weakly, for the nonaberrated configuration. This is in
agreement with the claim of Hansen et al. [6] that the best results are obtained using a water
immersion objective.

Further insight into the trapping mechanism can be gained by considering the relative impor-

tance of the contributions to the radiation force from F(Ext)
Radz , Eq. (3b), and F(Sca)

Radz , Eq. (3a). In

Fig. 6 we report F(Ext)
Radz (left) and F(Sca)

Radz (right), calculated per unit incident power, as a function
of z on Au spheres for several values of their radius. By following the evolution of these two

contributions as a function of the radius, we see that F(Sca)
Radz does not vanish but is at least 2

orders of magnitude smaller than F(Ext)
Radz up to r = 50nm. As a consequence the trapping po-

sition is mainly determined by the vanishing of F(Ext)
Radz with a negative derivative. This is most
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easily seen in Table 1 in which we report, for each radius, both for Au and for Ag, the actual

trapping position and the one that would be determined by the vanishing of F(Ext)
Radz alone, i.e.,

by putting F(Sca)
Radz ≡ 0. On the contrary, F(Ext)

Radz for r > 77nm becomes everywhere nonvanishing.

Moreover, F(Sca)
Radz beyond being negative, becomes comparable to F(Ext)

Radz . Thus, when F(Sca)
Radz is

subtracted from F(Ext)
Radz to get the total optical force according to Eq. (2), one easily sees that it

does not help to get the trapping. The combined behavior of F(Ext)
Radz and F(Sca)

Radz also explains the
borderline weak trapping of the r = 77nm spheres.

The behavior of the radiation force in the region in which the trapping of spheres with r >
80nm might occur, strongly suggests that a given model with parameters chosen once for all
cannot explain the trapping of the larger particles: the theory is linear in the power, indeed. We
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Table 1. Trapping positions of Au and Ag nanospheres. r is the radius of the spheres used
in [6, 7], zT is the calculated trapping position, and zE the trapping position determined by
the extinction contribution alone. r, zT, and zE are all in nm.

Au Ag
r zT zE r zT zE

15 40 40 20 16 16
25 65 64 30 47 45
35 118 113 40 116 107
45 213 200 50 234 213
50 283 262 71 708 632
77 916 841 - - -

must thus consider the possibility that the parameters of the model, essentially the refractive
index, may change with increasing power. In this respect, it is quite natural to suspect the
heating both of the medium and of the particles due to the use of a large laser power. Therefore,
we first considered the study of Liz-Marzán and Mulvaney [22] who measured the change
of the dielectric properties of Au colloids, more precisely of the surface plasmon absorption,
in the temperature range 14–70◦ C. These authors, after carefully considering all the physical
effects that stem from the increase of temperature, were led to the conclusion that the most
important factor is the change of resistivity of gold with a consequent change of its refractive
index. Nevertheless, the experiments of Liz-Marzán and Mulvaney [22] were performed on Au
spheres with an average diameter d = 15nm. When the corrections that they suggest on the
basis of the findings of Doremus [23] and of Kreibig [25] (these corrections depend on the size
of the particles) are calculated for spheres with a radius r ≥ 77nm, the change of the refractive
index turns out to be negligible and leads to no increase of the radius of the trappable particles.

Next, we considered that, according to Hansen et al., the power needed to trap the larger
Au spheres was of 135 mW, and that Seol et al. [8] in their study of the heat developed by the
trapping beam, estimate an increase of temperature at the surface of Au nanospheres as high
as 260◦ C/W. Much lower temperatures were estimated by Peterman et al. [26] at the surface
of dielectric particles, but in a recent paper Lapotko [27] demonstrated that the laser-induced
heating around plasmonic nanoparticles, in particular Au nanospheres, may excite detectable
vapor bubbles. These studies suggested us to use the formulas reported by Seol et al. [8] to
estimate the change of temperature, with respect to room temperature, at 5 nm from the surface
of the Au and Ag nanospheres considered in [6] and [7]. The results of our estimate are reported
in Table 2 where we also reported the absorption cross sections that, unlike [8], we calculated
without resorting to the dipole approximation. The other parameters were taken as reported by
Seol et al. because they are compatible even with our focalized beam.

The increases of temperature reported in Table 2 should be taken with some caution as they
are due to a simplified model of the thermal equilibrium of the naked metal spheres and the
surrounding water, yielding perhaps too large values for the largest Au spheres. Anyway, these
increases turn out to be large enough to justify the working hypothesis that the particles, espe-
cially the largest ones, may become embedded into a steam bubble. In turn, the presence of a
steam bubble, provided it is stable enough, will attenuate the effect of the metallic nature of the
particles. Of course, we kept the thickness of the steam layer, which we assumed to have the
refractive index nsteam = 1, as small as possible, just for the sake of stability, and made also the
assumption that the particle remains steadily at the center of the bubble. Thus we calculated the
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Table 2. Temperature change with respect to room temperature for the Au and Ag
nanospheres used in [6] and [7] at their trapping position. r is the radius (in nm) of the
spheres used in [6, 7], σabs (in μm2) is the absorption cross section, and ΔT/P is the change
of temperature (in K/W) due to heating by the trapping beam. ΔT has been estimated using
the formulas in [8] at 5 nm from the surface of the nanospheres.

Au Ag
r σabs ΔT/P r σabs ΔT/P
15 3.48×10−6 36.43 20 1.02×10−6 8.53
25 1.87×10−5 130.46 30 4.14×10−6 24.72
35 6.01×10−5 313.75 40 1.15×10−5 53.55
45 1.47×10−5 614.78 50 2.57×10−5 97.73
50 2.15×10−4 817.74 71 9.21×10−5 253.09
77 1.05×10−3 1679.90 84 2.54×10−4 597.55
98 2.50×10−3 5072.50 112 4.31×10−4 769.23

127 4.61×10−3 7303.20 137 6.09×10−4 896.24

field scattered by the stratified particle that includes the metal nanosphere surrounded by the
steam layer and embedded into water. This has been done by exploiting the procedure that we
developed just to study the resonances of layered metal spheres [28]. The resulting scattered
field, when introduced into the Maxwell stress tensor, yields through Eq. (1) the radiation force

acting on the center of mass of the particle. Our results for F(Ext)
Radz and F(Sca)

Radz on Au spheres are
summarized in Fig. 7. The spheres with r = 98nm are surrounded by a steam bubble with thick-
ness 100 nm, and those with r = 127nm are surrounded by a bubble with thickness 130 nm. We
stress that the total diameters (particle plus bubble) are smaller than the width of the trapping
spot and of the resolution of the imaging system used in the experiments. We also included the
results for spheres with r = 77nm surrounded by a steam layer with thickness 5 nm in order to
see whether the presence of the bubble improves the trapping. All the calculations were per-
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Fig. 7. F(Ext)
Radz (left) and F(Sca)

Radz (right) as a function of z for Au spheres in a steam bubble.
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formed in the absence of aberration. By comparing the lower panels of Fig. 6 with Fig. 7 we

Table 3. Trapping positions of Au and Ag nanospheres embedded into a steam bubble. r is
the radius of the spheres used in [6, 7], t the thickness of the steam layer, zT is the calculated
trapping position, and zE the trapping position determined by the extinction contribution
alone. r, t, zT, and zE are all in nm.

Au Ag
r + t zT zE r + t zT zE

77+5 864 781 84+10 880 752
98+100 -1492 -1470 112+130 -1430 -1444

127+130 -1379 -1362 137+160 -1382 -

see that the extinction contribution or the r = 77nm spheres into a bubble still vanishes with a
negative derivative at about the same z at which it vanishes for the bare sphere. At this value of
z the scattering contribution is small and, although negative, when subtracted from the extinc-
tion contribution is not able to destabilize the trapping. The new results come for the r = 98nm
and the r = 127nm spheres whose extinction contribution alone would grant the trapping for
a negative value of z. The scattering contribution, being slightly positive at the trapping posi-
tion, would increase the stability for the 98 nm spheres. Also the scattering contribution for the
127 nm spheres is positive at the trapping point so that we find again an increase of stability.
Although we do not report specific figures, similar results were found for the Ag spheres. We
report in Table 3 all the trapping positions both for gold and silver spheres, together with the
thickness of the steam layer. However, we stress that the trapping of the r = 137nm Ag spheres
is granted only by surrounding them with a steam bubble with a thickness as large as 160 nm,
i.e., noticeably larger than the radius of the spheres, and that the extinction contribution alone
is not able to produce trapping. We have no explanation for this difference but we notice that
the specific heat of Ag is about two times the value for gold; a further analysis of this point is
beyond the purpose of the present investigation.

The stiffnesses of the trap for spheres into a steam bubble are reported and marked by arrows
in Fig. 3 for Au and in Fig. 4 for Ag. We see at once that our calculated values of κz/P for
gold, rather surprisingly, coincide with the experimental values. In particular the addition of the
bubble to the 77 nm spheres produces little change of κz/P. As for κx/P, we see that for 77 nm
spheres it lies on the calculated curve, whereas, for the largest spheres, it lies on a line parallel
to the experimental data. As regards Ag spheres we see that the calculated stiffnesses in the
presence of a steam bubble are rather lower than the experimental data. In a sense this confirms
the finding of Bosanac et al. that the experimental stiffnesses for these spheres turn out to be
lower than expected.

We conclude the present investigation by remarking that an electromagnetic theory that goes
beyond the dipole approximation is able to give a reliable quantitative interpretation of the ex-
perimental data on trapping of Au and Ag nanospheres. Nevertheless, when large laser powers
need to be used, one should in principle consider also effects that may change the dielectric
properties of the particles and of their near environment. Furthermore, a detailed investigation
of the heat flow is necessary in order to formulate a physically reliable model for the optical
trapping of metal particles in a focused beam of high intensity. On the other hand, although
our oversimplified model of particles into a steam bubble should be considered as a working
hypothesis, it definitely gives an acceptable agreement with the available experimental data.
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