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1 Introduction

More than thirty years after its inception, maximal supergravity continues to be a fas-

cinating theoretical edifice. Issues of current interest include its possible finiteness as a

theory of quantum gravity, its connection to the worldvolume theory of M2-branes and

its possible holographic applications in condensed matter systems. In the latter two of

these developments, a subgroup of the E7(7) theory has been elevated to a local symmetry,

leading to maximal gauged supergravity. The prime example is the SO(8) gauging [1, 2],

which arises from an S7-reduction of D = 11 supergravity.

Perturbative physics arises as an expansion around a chosen vacuum. A proper under-

standing of the vacuum structure of a given theory is therefore of the utmost importance.

For the SO(8) theory, the vacuum structure has been investigated in ever increasing detail

over the last decades. The critical points that preserve an SU(3) gauge group have been

exhaustively classified using analytic properties [3]. Recently this method has been com-

plemented with numerical techniques, with which it is possible to look for critical points

preserving a smaller fraction of the gauge group. Indeed, in addition to the seven classic

examples preserving at least SU(3) or SO(4), a large number with gauge groups consisting

of zero, one or two factors of U(1) have now been found (in addition to one exceptional
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SO(4)′ case) [4, 5]. All critical points are Anti-de Sitter, and lie strictly below the maxi-

mally supersymmetric one preserving SO(8) at the origin. Furthermore, a number of new

properties concerning the spectra of two of these critical points have come to light.

First of all, the mass spectrum was calculated for the critical point that preserves an

SU(4)− subgroup [6]. This serves, in a truncated setting, as the endpoints of the flow that

emerges in the zero temperature limit of the holographic superconductor solution of [7].

However, it turns out that in the full N = 8 theory, the spectrum has an average mass of1

m2/|V | = −3/10 but includes twenty tachyonic scalars with a mass m2/|V | = −1. As this is

below the Breitenlohner-Freedman bound [8] of m2/|V | ≥ −3/4, this signals an instability.

This is perhaps not very surprising, as this critical point breaks supersymmetry completely.

Indeed, the expectation has been for a long time that within maximal supergravity, there

are no non-supersymmetric and nevertheless stable critical points.

The second new result involves the mass spectrum of the SO(4) invariant critical point.

Again, this critical point breaks all SUSY and hence was expected to be perturtbatively

unstable. However, an explicit calculation showed that this is not the case [9]. While the

average mass in this case amounts to m2/|V | = 6/35, the lowest scalar masses are again

twentyfold and come in at m2/|V | = −4/7. Contrary to expectation, and thanks to the

BF bound, this critical point is therefore perturbatively stable. Therefore it turns out to

be possible to attain stability without supersymmetry, also in maximal supergravity.

A similar phenomenon has subsequently been found in a different setting. Most theories

other than SO(8) have only been investigated in the origin. Examples include the unstable

De Sitter critical points of SO(4, 4) and SO(5, 3) [10]. However, an exhaustive classification

of all SO(3) critical points has also been performed in the half-maximal theories that

arise in IIA geometric compactifications with O6/D6 sources [11]. Surprisingly, out of a

myriad of possibilities, it turns out that only a single theory has such critical points, of

which there are four distinct ones. Moreover, this compactification requires a vanishing

net O6/D6 charge, and hence can be embedded in the maximal theory. The full mass

spectrum of one of the non-supersymmetric critical points turns out to have an average

value of m2/|V | = 16/5 and the lowest masses are given at m2/|V | = 0. Therefore this

critical point is also perturbatively stable, in this case even without the BF bound, again

while breaking all supersymmetry.

In light of the renewed interest in the vacua structure of these different maximal su-

pergravity theories, it seems to be of interest to analyse in full generality to what extent

one can make statements concerning stability. For instance, given these newfound non-

supersymmetric vacua with perturbative stability, a natural question concerns their mul-

titude in the landscape of critical points. Are they rare occurances, as perhaps suggested

by history, or are they in fact very commonplace but have we been looking in the wrong

corner of the landscape so far? In other words, how easy is it to preserve stability while

breaking supersymmetry?

In the best possible scenario, it would be feasible to analyse the stability of all super-

symmetry breaking critical points for all maximal supergravities in one fell swoop, including

1In all of this paper but figure 1, we will express all masses in units of the scalar potential V . This is

related to the (A)dS length L via |V |L2 = 3.
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all possible gaugings and hence scalar potentials. However, as can be expected, the pos-

sibilities to analyse vacuum stability are rather limited in such a general setting. The full

mass matrix is 70-dimensional, and hence cannot be diagonalised directly. One will have

to consider projections onto lower-dimensional subspaces. In this way one can derive nec-

essary (but not necessarily sufficient) conditions for stability. The simplest possibility that

comes to mind is the trace of the mass matrix. As we will show, this average mass does

not teach one much. Beyond this, one needs specific directions onto which to project the

mass matrix.

For configurations that break supersymmetry (even if only partly), the sGoldstini

furnish specific directions in scalar space. sGoldstini are the scalar partners of the dilatini

that are absorbed by the eight gravitini in the process of supersymmetry breaking. Their

relevance in distinguishing unstable directions in N = 1 supergravity was pointed out

in [12–14], while this has been generalised to theories with extended supersymmetry in [15–

17]. In the present paper we will follow the analysis of [17] and apply this to the most

general theory of maximal supergravity.

A sneak preview of the main results of this paper includes the following highlights.

Indeed the sGoldstino directions allow for a measure of the ratio between the number

of stable and unstable critical points. We find that a very small fraction of parameter

space allows for stable sGoldstino directions. As this is only a necessary condition, the

actual set of stable, non-supersymmetric critical points is expected to be even smaller.

This holds true for AdS, Minkowski and dS critical points, and explains the notion of

minimal stability of the title. Furthermore, we find that there is a finite gap between

the maximally supersymmetric critical point and all non-supersymmetric critical points.

This stems from the impossibility to introduce arbitrary supersymmetry-breaking effects in

maximal supergravity, unlike e.g. F- and D-terms in N = 1. So-called quadratic constraints

prevent one from doing this in N = 8. Thus it seems that there is a minimal amount of

supersymmetry breaking that is needed to deform a supersymmetric critical point to a

non-supersymmetric one. The notion of approximate supersymmetry ceases to exist for

critical points of maximal supergravity.

Upon completion of this paper, a number of preprints [18–20] were submitted that ad-

dress related issues. In the context of randomN = 1 supergravity, it was found [18] that the

likelihood of stable De Sitter vacua is exponentially supressed as a function of the number

of moduli fields. Furthermore, the most promising places to look at are approximately-

supersymmetric critical points. Our results can be seen as an analytic2 N = 8 counterpart

of this. As there are 70 scalar fields in maximal supergravity, and moreover the notion of

approximate supersymmetry might not exist, it seems doubtful that there could be a stable

dS vacua at all. This is corroborated by our results. Furthermore, new critical points of

N = 8 gauged supergravity and their mass spectra were presented in [20], employing a

search method along the lines of [11]. It would be very interested to relate these results

to ours.

This paper is organised as follows. General background on maximal supergravities is

introduced in section 2, while section 3 discussed the sGoldstino projection and resulting

2Note that a random sample of N = 8 theories is non-trivial to define due to the quadratic constraints.
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mass values. In section 4 we go through a number of explicit examples of critical points,

while section 5 contains a general analysis of the constraints implied by the sGoldstino

mass. Finally, we conclude in section 6.

2 Maximal supergravity

Maximal supergravity is the unique theory in four dimensions with eight real supersym-

metries. Its field content consists of a graviton, eight gravitini, 28 vectors, 56 dilatini and

70 scalar fields. Together these form the supergravity multiplet, while there are no matter

multiplets for this theory. The symmetries of the theory include a global E7(7), which is

not a symmetry of the Lagrangian and can only be realised on the equations of motion,

however. In addition, there is a local SU(8) R-symmetry.

In addition to the field content, also the interactions of maximal supergravity are

constrained to a high degree by supersymmetry. In particular, in the ungauged theory,

all interactions are determined: the theory is unique. The only freedom to introduce

interactions in the theory is to consider gauged supergravity instead. The vectors allow

one to gauge a 28-dimensional subgroup of E7(7). This gauging completely determines the

additional interactions, and furthermore introduces non-zero masses in the theory.

A convenient framework to describe the most general maximal gauged supergravity is

the so-called embedding tensor [21, 22] . It determines which E7(7) generators are gauged by

which vector. As a consequence, the embedding tensor takes values in the tensor product of

the fundamental 56, in which the electric and magnetic components of the tensor transform,

with the adjoint 133, in which the E7(7) generators transform. This product is given by

56× 133 = 56 + 912 + 6480 . (2.1)

Supersymmetry implies that only gaugings corresponding to the 912 are consistent. It can

be represented by a constant tensor XMNP , where M corresponds to the fundamental 56,

subject to the linear conditions

XM [NP ] = 0 , X(MNP ) = 0 , XMN
N = XMN

M = 0 , (2.2)

that restrict XMNP to the 912. In addition consistency of the gauging requires the em-

bedding tensor to satisfy the following quadratic constraints, living in the 133 and 8645,

respectively:

[XM , XN ] = −XMN
P XP , XMN

P ≡ [XM ]N
P (2.3)

The 912 irrep of the embedding tensor completely determines the form of the theory, and

in particular of its mass spectrum. We will in particular be interested in the scalar mass

spectrum in critical points of the scalar potential.

The scalar fields span the coset E7(7)/SU(8). By virtue of the scalar manifold being

a homogeneous space, one can always employ the non-compact generators of the isometry

group to transform any critical point to the origin. The remaining symmetry is then given

by the isotropy group. In other words, we sacrifice the E7(7) symmetry and remain with
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its compact subgroup SU(8) as a symmetry. The advantage of this procedure is that one is

expanding all scalar quantities around the origin, where this expansion takes a particularly

nice form. We would like to stress that this does not consistute a loss of generality: given

any critical point of any maximal gauged supergravity, this can always be brought to the

origin with an E7(7) transformation, where our analysis applies.

After going to the origin of moduli space, the decomposion of a number of relevant

E7(7) irreps into SU(8) reads

56→ 28 + c.c. , 133→ 63 + 70 , 912→ 36 + 420 + c.c. , (2.4)

The decomposition of the 133 corresponds to the isometries of the scalar manifold:

the 63 are its compact isometries while the 70 are its non-compact isometries. Only the

latter correspond to physical scalars, which will be parametrised by

φijkl =
1

4!
εijklmnpqφ

mnpq . (2.5)

The scalar kinetic terms are canonically normalised and in the origin read

L = − 1

96
(∂µφijkl)

2 . (2.6)

The index i denotes the fundamental 8 of SU(8). Indices are raised and lowered by complex

conjugation. In addition, for four antisymmetrised indices, one can impose the self-duality

relation (2.5) involving the Levi-Civita tensor. This corresponds to a reality condition on

the 70 irrep, which therefore splits up in real (anti-)self-dual irreps 70±. In this notation,

the scalars take values in the 70+.

The decomposition of the 912 corresponds to the embedding tensor, which

parametrises all the gaugings and hence all the masses of this theory. We will denote

the two resulting SU(8) tensors as

36 : A1 ≡ Aij , 420 : A2 ≡ Aijkl , (2.7)

where the former is symmetric and the latter is anti-symmetric and traceless. Their role

is as follows:

• A1 is the scale of supersymmetric AdS,

• A2 is the order parameter of SUSY breaking.

However, in contrast to N = 1 theories, these different tensors are not independent. Rather
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they have to satisfy the following quadratic constraints:

0 = 9Ar
stmArsti −AirstAmrst − δmi |A2|2 , (2.8)

0 = 3Ar
stmArsti −AirstAmrst + 12AirA

mr − 1

4
δmi |A2|2 −

3

2
δmi |A1|2 ,

0 = Aijv[mA
v
npq] +Ajv δ

i
[mA

v
npq] −Aj[mAinpq]

+
1

4!
εmnpqrstu

(
Aj

ivr Av
stu +Aiv δrj Av

stu −Air Ajstu
)
,

0 = Ai
rsmAnjrs −AjrsnAmirs + 4A(m

ijrA
n)r − 4A(i

mnrAj)r

− 1

8
δni
(
Ar

stmArstj −AjrstAmrst
)

+
1

8
δmj
(
Ar

stnArsti −AirstAnrst
)
,

0 = Ar
mnpArijk−9A[i

r[mnAp]jk]r−9 δ
[m
[i Aj

rs|nAp]k]rs−9 δ
[mn
[ij Ar

p]stArk]st+δ
mnp
ijk |A2|2 ,

corresponding to the 63,63,70− + 378 + 3584,945 + 945 and 2352 irreps, respectively.

From the third equation we can extract the pure 70− and 378 irreps, taking the trace and

antisymmetrising. We get3

0 = Ar [ijkAl]r −
3

4
Ars[ijA

s
r|kl] −

1

4!
εijklmnpq

(
Ar

mnpAqr − 3

4
Ar

smnAs
rpq

)
, (2.9)

0 =
3

4
ArijkAlr +

3

4
Arl[ijAk]r −

1

4!
εmnpqrijk Al

qrsAs
mnp − 3

4

1

4!
εijklmnpq Ar

spqAs
rmn .

All these constraints are required for consistency of the gauging and follow from the the

decomposition of (2.3) with respect to SU(8).

From the general theory of maximal gauged supergravities it follows that the scalar

potential in the origin is given by

V = −3

4
|A1|2 +

1

24
|A2|2 . (2.10)

Furthermore, the mass matrix for the 70 real scalar fields reads [23]

m2
ijkl

mnpq = + δmnpqijkl

(
5

24
ArstuAr

stu − 1

2
ArsA

rs

)
+ 6 δ

[mn
[ij

(
Ak

rs|pAq]l]rs −
1

4
Ar

s|pq]Ars|kl]

)
− 2

3
A[i

[mnpAq]jkl] . (2.11)

In general this will be a scalar dependent quantity, but being in the origin it is completely

determined by the two embedding tensor components. The mass averaged over all 70

scalars corresponds to the properly normalised trace of this mass matrix and is given by

Tr{m2} = −1

2
|A1|2 +

1

20
|A2|2 . (2.12)

3Note that there is a little typo in the expression for the 378 in the third line of (D.4) in [23]. This can

be corrected by requiring this equation to live in the right irrep.
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Finally, the requirement of the origin to be a critical point translates into the additional

quadratic constraint

Ar [ijkAl]r +
3

4
Ars[ijA

s
r|kl] = − 1

4!
εijklmnpq

(
Ar

mnpAqr +
3

4
Ar

smnAs
rpq

)
, (2.13)

which correspond to the field equations of the scalars and therefore lives in the 70+.

Note that for supersymmetric critical points, for which A2 vanishes, all scalar masses

coincide and are given by m2/|V | = −2/3, corresponding to the discrete unitary irreducible

irrep of the AdS4 isometry group [24]. Indeed, this is the mass spectrum of the SO(8)

invariant critical point, for which A1 can be chosen to be proportional to the identity. This

is in fact the only N = 8 critical point, as we will now prove.

Specialising to A2 = 0, (2.8) and (2.9) reduce to a single constraint

Aik A
kj =

1

8
δji |A1|2 =⇒ MikMkj =

1

8
δji , (2.14)

with Mij = Aij/
√
|A1|2. M is a complex symmetric matrix which can thus be written

as M = R+ i I with R and I symmetric and real. Taking the product with the complex

conjugate we get

MM∗ = RR+ i [I, R] + I I =
1

8
1l8 . (2.15)

As the right hand side is a real quantity, we must necessarily have [I, R] = 0. Thus R and

I can be diagonalised simultaneously. Hence M can be brought in the form

M = diag{ei θ1 , ei θ2 , ei θ3 , ei θ4 , ei θ5 , ei θ6 , ei θ7 , ei θ8} . (2.16)

Using an SU(8) transformation we can eliminate 7 phases, makingM equal to the identity

modulo an overall phase. This proves that the only possible gauging with A2 = 0 and

therefore N = 8 is the SO(8) gauging.

The goal of this paper is to investigate the mass spectrum for non-supersymmetric

critical points, which are more difficult to analyse due to the complicated A2 contributions

to (2.11).

3 sGoldstini directions

As there are eight gravitini becoming massive in the process of supersymmetry breaking,

there are also eight Goldstini. Their supersymmetric partners, the sGoldstini, are therefore

64-fold and will be denoted by V rs
ijkl. Their explicit form is completely determined by the

order parameter of supersymmetry breaking, and in components is given by

V rs
ijkl = δr[iA

s
jkl] . (3.1)

These split up in the symmetric 36 and the antisymmetric 28 irreps. At any stationary

point, in line with the less supersymmetric cases [15–17], the set of 36 symmetric scalar

directions V (ij) correspond to physical sGoldstini scalars, while the set of 28 antisymmetric

– 7 –
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scalar directions V [ij] are pure gauge. The latter are directions that have been gauged away

by the gauging induced by A1 and A2.

From the above set of scalar directions, one can define the following Hermitian

projectors:

Pijklmnpq = V
(rs)
ijkl V

mnpq
rs , Qijkl

mnpq = V
[rs]
ijkl V

mnpq
rs . (3.2)

Due to the interpretation of the antisymmetric sGoldstini as gauge directions, the mass

matrix vanishes after projecting with Q, as we will see below. Instead we will be interested

in the projection of the mass matrix with P, yielding information on the physical scalars.

In order to describe the various quartic contractions of the A1 and A2 tensors that

appear when calculating the sGoldstini mass, it will be convenient to introduce the follow-

ing notation. Different contractions are denoted by 15 real coordinates ~x and 7 complex

coordinates ~z, with explicit components

x1 = |A2|2 |A2|2 , x2 = |A2|2 |A1|2 ,

x3 = |A1|2 |A1|2 , x4 = AirA
mr AmsA

is − 1

8
|A1|2 |A1|2 ,

x5 = Ar
stmArstiAu

vziAuvzm , x6 = Ar
stmArstiAm

uvzAiuvz ,

x7 = Ai
rstAmrstAm

uvzAiuvz , x8 = Ar
stmArstiAmuA

iu ,

x9 = Ai
rstAmrstAmuA

iu , x10 = Ar
smnArsij At

uijAtumn ,

x11 = Ar
smnArsij Am

tuiAjntu , x12 = Ai
rsmAnjrsAm

tuiAjntu ,

x13 = Ai
rsmAnjtuAm

tujAintu , x14 = Ai
rsmAnjrsA

ijAmn ,

x15 = Ar
s[ijAs

r|kl]AtuijA
u
tkl ,

z1 =
1

4!
εijklmnpq Ar

ijkAlr As
mnpAqs , z2 =

1

4!
εijklmnpq Ar

sijAs
rklAt

umnAu
tpq ,

z3 = Ars[ijA
s
r|kl]At

ijkAlt , z4 =
1

4!
εijklmnpq Ar

sijAs
rklAt

mnpAqt ,

z5 =
1

4!
εijkmnprsAt

ijk AvzAv
mnpAz

rst , z6 = Ar
smnArsij A

i
mntA

jt ,

z7 =
1

4!
εijkmnprsAv

zrtAz
vsuAt

ijkAu
mnp . (3.3)

The ~x and ~z can be seen as coordinates of a vector space. We will later find that not all

domains of this space are admissible for viable gaugings.

The metastability of any non-supersymmetric critical point of maximal supergravity

can be investigated by considering projections of the mass matrix. In particular, we project

the mass matrix using the symmetric sGoldstini scalars:

M2
sG = Pijklmnpqm2

mnpq
ijkl . (3.4)

– 8 –
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We will refer to this quantity as the sGoldstino mass, even though it does not necessarily

correspond to any of the eigenvalues of the mass matrix (2.11). Instead, it consists of

the sum of the diagonal elements of the mass matrix corresponding to the 36 sGoldstini.

Expression (3.4) is quartic in the embedding tensor components. In order to obtain a mass

we need to normalise it dividing by the trace of the projector P. It is given by

δijklmnpq Pijklmnpq =
3

4
|A2|2 . (3.5)

Hence we define the properly normalised sGoldstino mass as

m2
sG =

M2
sG

3
4 |A2|2

. (3.6)

Clearly, in order for a critical point to be stable, a necessary condition is that the normalised

sGoldstino mass is positive or, in the case of AdS, is above the Breitenlohner-Freedman

bound m2 = 3
4V .

The sGoldstino mass turns out to be given by

M2
sG =

17

96
x1 −

3

8
x2 −

3

8
x5 −

5

16
x6 +

1

48
x7 −

9

16
x10 +

27

16
x11 +

9

16
x13 . (3.7)

From the above form it is not obvious how one can make definite statements about its

value. However, there is a number of constraints on the embedding tensor components

that we can use in order to simplify the sGoldstino mass.

Recall that the A1 and A2 tensors that define the scalar potential and hence the

sGoldstino mass are subject to a number of quadratic constraints (2.8). In the following

we will show a simple example of how these constraints can be used to reduce the number

of independent ~x, ~z. Consider the first two expressions of (2.8) both living in the 63 .

Subtracting the second from the first and multiplying the result with its complex conjugate,

we get the following relation quartic in A1 and A2

0 = Ar
stmArstiAu

vziAuvzm −
1

8

(
|A2|2

)2 − 4

(
AirA

mr AmsA
is − 1

8
|A1|2 |A1|2

)
. (3.8)

It is clear that, using the dictionary (3.3), this can be interpreted as a hyperplane

in ~x-space.

0 = x5 −
1

8
x1 − 4x4 . (3.9)

The full set of such restrictions reads

from the 63



0 = x5 − 1
8 x1 − 4x4 ,

0 = x6 − 1
8 x1 − 36x4 ,

0 = x7 − 1
8 x1 − 324x4 ,

0 = x8 − 1
8 x2 − 2x4 ,

0 = x9 − 1
8 x2 − 18x4 ,
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from the 70−

{
0 = 1

2 x9 −
3
2 x14 − (z1 + z̄1)− 3

4 (z3 + z̄3) + 3
4 (z4 + z̄4) ,

0 = 3
4 (z3 + z̄3)− 3

4 (z4 + z̄4) + 9
16 (z2 + z̄2)− 9

8 x15 ,

from the 378

{
0 = x9 + x14 − 4

3 z5 − z4 ,
0 = 4

3 z̄5 + z̄4 − 1
6 x6 − x11 −

1
2 x13 + 3

4 x15 ,
(3.10)

from the 945

{
0 = x10 − x12 − 4 z6 + 4 z3 − 1

8 x5 + 1
4 x6 −

1
8 x7 ,

0 = 2 z6 − 2 z3 − 4x8 − 4x14 ,

from the 2352

{
0 = x11 + x13 − 32x4 ,

0 = 1
3 x1 − 3x5 − x6 + x10 − 5x11 − x12 − x13 + 6x15 ,

from the 3584

{
0 = −3

4 z6 −
3
4 x8 −

1
4 x9 + 1

4 x2 + 3
2 z4 + z5 − z1 ,

0 = −z̄7 + 3
2 z̄4 + 1

4 x6 + 3
4 x11 −

3
4 z3 −

3
4 z6 .

We can add to to this set two more equations coming from the equations of motion (2.13)

which live in the 70+. They reads

0 =
1

2
x9 −

3

2
x14 + (z1 + z̄1) +

3

4
(z3 + z̄3) +

3

4
(z4 + z̄4) ,

0 =
3

4
(z3 + z̄3) +

3

4
(z4 + z̄4) +

9

16
(z2 + z̄2) +

9

8
x15 . (3.11)

The derivation of all these conditions can be found in the appendix.

Using these quartic relations the sGoldstino mass can be simplified to

M2
sG =

3

64
x1 +

33

2
x4 −

9

16
x10 . (3.12)

We will first calculate the sGoldstino mass in a number of known examples of critical

points, and subsequently use the quadratic constraints to derive upper and lower bounds

on the above expression.

To finish this section, we adress the projection of the mass matrix with the anti-

symmetric sGoldstino directions. This corresponds to tracing m2 with the projector Q,

and yields

Qijkl
mnpqm2

mnpq
ijkl =

1

12
x1 −

1

4
x2 −

3

8
x5 −

1

16
x6 +

1

48
x7 +

9

16
x11 −

3

16
x13 (3.13)

It can be seen that this expression vanishes modulo the quartic relations above. This

supports our interpretation of the antisymmetric sGoldstino directions as pure gauge.

4 Specific examples

Before going through the discussion about the metastability of critical points in the case of

supersymmetry breaking, it is worthwhile to work out the explicit form of the embedding

tensor for some specific gaugings. Some of the easiest examples are built by requiring in-

variance under maximal subgroups of SO(8), namely SO(4)⊗ SO(4) and SU(2)⊗ Usp(4).
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Finally we will study four examples that arise in the study of geometric flux compactifi-

cations. In what follows we will always choose the normalisation of the embedding tensor

such that |A1|2 = 4
3 . In this way, the scalar potential in the fully supersymmetric vacuum

will be given by V = −1.

The SO(8) and SO(4) ⊗ SO(4) gauging. We split the i index in two SO(4) indices a

and â. The flux components which can be constructed using singlets with respect to

these groups are the following

Aij −→


Aab = λ1 δ

ab

Aâb̂ = λ̂1 δ
âb̂

, Ai
jkl −→


Aa

bcd = λ2 δae ε
ebcd

Aâ
b̂ĉd̂ = λ̂2 δâê ε

êb̂ĉd̂

.

From the quadratic constraints in the 63 we get that

|λ1| = |λ̂1| , |λ2| = |λ̂2| . (4.1)

Furthermore, from the quadratic constraints in the 70 and the equations of motion,

we get two possible solutions, namely either λ2 = 0 or λ1 = 0.

The first case corresponds to only A1 and therefore the maximally supersymmetric

SO(8) gauging that we discussed before. In order to get the correct normalisation

|A1|2 = 4
3 and hence V = −1 one needs to choose λ1 = 1/

√
6. All scalar masses at

this critical point are given by m2 = −2
3 .

In the other case the only non zero flux components are Aa
bcd and Aâ

b̂ĉd̂. It necessarily

corresponds to the SO(4, 4) gauging [10], as this is the unique other gauging that

overlaps with the SO(8) gauging in two SO(4) subgroups. For this gauging, being

|A1|2 = 0, our normalisation fails. Nevertheless, the potential is positive and is given

by V = 2 |λ2|2. The mass spectrum is given by

m2

V
(multiplicity) : −2 (×2) , 0 (×16) , 1 (×16) , 2 (×36) . (4.2)

There are two tachyons in the spectrum. They render this de Sitter critical point

unstable. Interestingly, the sGoldstino mass is zero in this case.

The SU(2) ⊗ Usp(4) gauging. Another maximal subgroup of SO(8) is SU(2)×Usp(4),

which is isomorphic to SO(3) × SO(5). This is the preserved part of the SO(5, 3)

gauging at the origin. In this case we split the i index in the pair αM with α = 1, 2

and M = 1, . . . 4. The flux components are

Aij −→ AαM, βN = λ1 ε
αβ ΩMN ,

Ai
jkl −→ AαM

βN, γP, δQ = λ2

(
δ(βα εγ)δ δQM ΩNP + δ(δα ε

β)γ δPM ΩQN + δ(γα εδ)β δNM ΩPQ
)
.

We find that the quadratic constraints and the equations of motion are satisfied by

these decomposition provided

|λ2|2 = 4 |λ1|2 .
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Our choice for the normalisation fixes |λ1|2 = 1
6 and thus |λ2|2 = 2

3 . The potential

is given by V = 4. The origin is a de Sitter stationary point with both A1 and A2

turned on. The mass spectrum is given by

m2

V
(multiplicity) : −2 (×1) , −2

3
(×5) , 0 (×15) , 2 (×30) ,

4

3
(×14) , 4 (×5) .

(4.3)

Again the presence of a tachyon renders the critical point unstable. The sGoldstino

mass is zero also in this case.

Geometric IIA compactifications. There is a class of half-maximal gauged supergrav-

ity which arises as the low energy limit of certain type IIA orientifold compactifica-

tions including background fluxes, D6-branes and O6-planes. For this class of theories

the complete mass spectrum was worked out in [11]. In the same paper it was dis-

covered that the complete vacuum structure can be embedded in the N = 8 theory.

The set of vacua is given by 4 points with an additional four-fold degeneracy related

to a Z2 × Z2 symmetry. We give here the value of the potential, the average mass

squared, the most tachyonic field, the stability properties and the amount of residual

supersymmetry for these inequivalent four points4 [11, 25].

Critical point V Tr{m2}/|V | m2
sG/|V | Min{m2}/|V | Stable SUSY

1 − 4
27

12
5 ∼ 1.72 −2

3

√
N = 1

2 − 20
129

56
25 ∼ 1.54 −4

5 × —

3 − 4
33

16
5 ∼ 2.54 0

√
—

4 − 4
21

8
5 ∼ 1.12 −4

3 × —

5 Bounds on sGoldstino mass

5.1 Derivation of bounds

Using the quartic relations it is possible to simplify the expression (3.7) for the sGoldstino

mass obtaining (3.12). Despite its simplicity, this expression doesn’t have a definite sign.

The actual value depends on the interplay between the different terms once a gauging is

chosen. Finding an upper (lower) bound on the sGoldstino mass amounts in maximising

(minimising) a function of the independent variables in (3.12). This function is linear

and, as long as the variables are free to move in the whole space, it has no maximum

or minimum. Fortunately there are several constraints which can be imposed on those

variables by general arguments.

The first, trivial one, comes from the very definition (3.3). We indeed see that

x1, x2, x3, x5, x7, x10 ≥ 0 (5.1)

4We are grateful to Giuseppe Dibitetto and Adolfo Guarino for providing as of yet unpublished results

on these points.
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Another type of constraints comes out considering particular quadratic combinations of

the embedding tensor components belonging to irreducible representations. As an example

take the following combination

Ar
smnArsij −

2

3
δ
[m
[i Ar

n]stArj]st +
1

21
δmnij |A2|2 ,

belonging to the 720 irrep. If we take the product of this expression with its complex

conjugate, we get by definition a non-negative expression, quartic in A1,2. After replacing

the dependent variables we are left with

Ar
smnArsij At

uijAtumn −
8

3

(
AirA

mr AmsA
is − 1

8
|A1|2 |A1|2

)
− 1

28

(
|A2|2

)2 ≥ 0

−→ x10 −
8

3
x4 −

1

28
x1 ≥ 0 .

In the following the complete list of inequalities obtained using this procedure. The actual

derivation of all the constraints is shown in the appendices.

For the 63 we find a one-parameter family of inequalities

|α1|2 x4 ≥ 0 . (5.2)

For the 70 we find a two-parameter family

|β1|2 x15 −
3 |β2|2

4
x14 +

|β2|2

4
x9 + β1β

∗
2 z3 + β∗1β2 z̄3 ≥ 0 . (5.3)

The presence of the two parameters in this case is related to the possibility of building

different kinds of contractions, using A1 and A2, all belonging to the same irrep. Once again

we refer to the appendices for a detailed explaination. For the 330 we find a constraint

which is already implied by others. For the 336 we find a three-parameter family but the

irrep always contains new variables, and hence we will not consider it. For the 378 we find

a one-parameter family

|δ1|2 (x9 + x14) ≥ 0 . (5.4)

For the 720 we find a three-parameter family

(|ε1|2 + |ε2|2)x10 + 2 (ε1ε
∗
2 + ε∗1ε2)x11 + |ε2|2 x12 − 2 |ε2|2 x13

− 1

6
| − 2 ε1 + ε2|2 x5 −

1

6
(−2 ε∗1 + ε∗2)ε2 x6 −

1

6
(−2 ε1 + ε2)ε

∗
2 x6 −

1

6
|ε2|2 x7

+
|ε1−ε2|2

21
x1+(ε1+ε2) ε

∗
3 z̄6+(ε∗1+ε∗2) ε3 z6 + ε2ε

∗
3 z̄3+ε3ε

∗
2 z3+

|ε3|2

2
x8−

|ε3|2

2
x14 ≥ 0 .

(5.5)

For the 945 we find a one-parameter family

|ζ1|2(x8 + x14) ≥ 0 . (5.6)
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For the 1232 we find a two-parameter family

|η1|2 x10 + |η1|2 x12 + 2 |η1|2 x13 −
|η1|2

10
(x5 + 2x6 + x7) (5.7)

− η1η
∗
2 + η2η

∗
1

5
(x8 + x9) + 2 (η1η

∗
2 + η2η

∗
1)x14

|η1|2

45
x1 +

η1η
∗
2 + η2η

∗
1

45
x2 +

35 |η2|2

36
x3 −

2 |η2|2

5
x4 ≥ 0 .

For the 1764 we find a one-parameter family

|θ1|2
(
x10 − 5x11 +

1

2
x12 −

5

2
x13 −

9

8
x5 −

10

8
x6 −

1

8
x7 +

1

5
x1 +

9

2
x15

)
≥ 0 . (5.8)

For the 2352 we find a one-parameter family

|ι1|2
(
−9

4
x10 +

9

10
x5 + x7 −

1

20
x1

)
≥ 0 . (5.9)

For the 3584 we find a one-parameter family

|κ1|2(x6 + 3x11 − 2x15) ≥ 0 . (5.10)

Moreover, one can employ a number of “matrix tricks” to derive further bounds on

the domain of the sGoldstini mass. Whenever we have a matrix

MI
J = VI V

J ,

with V J = (VJ)∗, it is hermitean and has real, non-negative eigenvalues. Hence one can

write the following inequality

Tr{M2} ≤ [Tr{M}]2 .

The left hand side is nothing but
∑n

I=1 λ
2
I while the right hand side is (

∑n
I=1 λI)

2 with λI
being the non negative eigenvalues. Applying this to AirA

mr, Ar
smnArsij , Ar

stmArsti and

Ai
rstAmrst one finds respectively

x1 − x10 ≥ 0 ,
7

8
x3 − x4 ≥ 0 , x1 − x5 ≥ 0 , x1 − x7 ≥ 0 . (5.11)

The last type of constraints we have been able to find has a geometric origin. In par-

ticular, the E7/SU(8) scalar manifold is a symmetric space with the interesting property

that, at any point, the sectional curvature is always non positive [26]. The sectional curva-

ture is defined taking a suitable contraction of the Riemann tensor with vectors, spanning

a plane in the tangent space. We have two sets of directions along the scalar manifold,

namely the symmetric and antisymmetric sGoldstino directions. From those directions we

can construct the following three quantities proportional to sums of sectional curvatures

RQQ = −6x1 + 9x5 − 15x6 − 3x7 − 27x10 + 18x11 + 45x13 + 27x15 ,

RQP = −10x1 + 45x5 + 3x6 − x7 − 27x10 + 18x11 + 9x13 − 27x15 ,

RPP = −18x1 + 81x5 + 9x6 + 5x7 − 27x10 − 54x11 − 63x13 + 27x15 . (5.12)
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As explained before, these quantities are non positive due to the geometry of the scalar

coset space.

This finishes our derivation of the quartic inequalities that we will use. Note that this

is not necessarily an euxhaustive list but we will restrict ourselves to the above in what

follows. In particular, We will now turn to maximising (minimising) the function (3.12)

subjected to (5.2) up to (5.12). Geometrically these constraints define a domain in the

variable space. The problem is a generalisation of a constrained extremalisation problem

where the constraints are now inequalities instead of equalities.

5.2 The case A1 = 0

For all the gaugings with A1 = 0, in a critical point, we have a positive cosmological

constant, thus a de Sitter space. All the known examples of de Sitter configurations in

N = 8 supergravity are unstable. We will see that, the sGoldstino direction in this case

inherits some of the instability but it’s not parallel to the tachyonic directions. Indeed it

turns out that its value will always be 0.

The proof is simple and goes as follows. The sGoldstino mass (3.12) reduces to

M2
sG =

3

64
x1 −

9

16
x10 , (5.13)

thus its sign is still uncertain due to the interplay between a negative and a positive

contribution. Nevertheless we can see that, taking (5.5), putting to zero all the terms

proportional to A1 and choosing ε1 = ε2 = 1, we get

−1

4
x1 + 3x10 ≥ 0 .

On the other hand, in the absence of A1, in terms of the independent variables the inequal-

ity (5.8) reads

3

16
x1 −

9

4
x10 ≥ 0 .

Both the above inequalities have to hold. The first one sets 0 as an upper bound for the

sGoldstino mass, while the second one sets 0 as a lower bound.

This tells us that the sGoldstino mass necessarily vanishes. In other words, the allowed

window between the minimum and the maximum of the sGoldstino mass shrinks to a point

in the case where A1 vanishes. This coincides with our previous result for the SO(4, 4)

gauging, but we now find that this holds for all critical points where A1 = 0. Therefore,

in the case where the scalar potential is completely determined by the order parameter

of supersymmetry breaking, the mass spectrum will always contain either a number of

tachyonic modes, or several flat directions. A stable De Sitter vacuum with strictly positive

masses is impossible.

5.3 The general case

In the general case the analysis is somewhat more complicated. The presence of A1 opens

up more directions in the ~x space. It’s unclear which of the inequalities amongst (5.2)–

(5.12) will give the most stringent bound on the variables appearing in the sGoldstino mass.
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In other words, the domain defined by all the constraints has a non-trivial shape due to

the large number of variables. The problem is really a generalisation of the constrained

maximisation (minimisation) of a function. Fortunately there are some algorithms which

allow one to solve this kind of problems. We have employed the one built in in Mathe-

matica. In this way we have calculated the maximum and the minimum of the sGoldstino

mass (3.12), whenever the independent ~x and ~z variables are subject to all the constraints

given above.

The only technical point resides in the inequalities which depend on two or more pa-

rameters and must hold for whichever value of these parameters (see for instance (5.3), (5.5)

etc.). If we use Mathematica to maximise (or minimise) the sGoldstino mass subjected to

such a parametric constraint, the computing time blows up irremediably. To solve this

issue we’ve chosen to generate from those general inequalities containing two parameters,

a number of resulting inequalities by fixing the value of the parameters. This constitutes

of course a loss of generality but it’s worth to mention two points.

First of all, from a conceptual point of view, this procedure amounts to soften the

constraints on the allowed domain. In other words there can be more space for the inde-

pendent variables and thus the maximum (minimum) of the function can only be higher

(lower). If we find an interesting bound in a larger domain things could only improve if we

were able to account for the full, parametric constraint. Nevertheless we’ve tried to gen-

erate a huge number of resulting inequalities in order to constrain as much as possible the

problem. Furthermore, we have noticed that, for different numbers and choices of resulting

inequalities, the value of the maximum and the minimum does not change as long as one

includes a minimum amount of constraints.

We are thus finally able to give the results. They are summarised in figure 1, in which

the different symbols signify the following:

• On the x-axis is the mass of scalar fields, normalised with respect to 3
4 |A1|2. On the

y-axis we have plotted the value of the scalar potential in the normalisation where

|A1|2 = 4
3 , which is chosen in order to have V = −1 in the fully supersymmetric case.

• We have included the straight line corresponding to the average over all 70 scalars,

whose mass is given by (2.12). This corresponds to the normalised trace over the

mass matrix.

• In the Anti-de Sitter part, we have also depicted the the BF bound which divide this

region in a stable and an unstable sector.

• The allowed window for the sGoldstino mass is delimited by the two lines Min{m2
sG}

and Max{m2
sG}. In fact, we have included two such windows: an off-shell window,

where we only incorporate the consequences of the quadratic constraints, and an

on-shell window, where we additionally include the quartic relations following from

the field equations in the 70+. Clearly the on-shell window sits inside the off-shell

one. Furthermore, we have indicated the stable sGoldstino by a filling with horizontal

lines, while the unstable region is filled with diagonal lines.
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Figure 1. The bounds on the sGoldstino mass (horizontally) in units of 3
4 |A1|2 as a function of

the scalar potential (vertically). The different symbols are explained on the previous page.

• Finally, we have included the sGoldstino masses of the examples discussed in section

4 (i.e. SO(4, 5), SO(3, 5) and geometric IIA) with a star symbol. In addition, we have

included the SU(4)− and SO(4) critical points of [6, 9] by putting a black box for

their averaged masses. The sGoldstino masses are not known in these cases.

A number of interesting conclusions can be drawn from this picture.

Let’s start with the upper part of the picture (V > 0). We see that the maximum stays

constant while the minimum goes to 0. This is an interesting finding. Indeed if one had

computed m2
sG/V instead of normalising m2

sG to 3
4 |A1|2, the window would have shrunk to
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zero. In other words, the further one moves in the de Sitter region (|A2|2 � |A1|2) the more

ηsG ≡ m2
sG/V approaches zero. Remember that the sGoldstino mass is roughly an average

over several masses and the fact that it’s almost zero implies either the presence of a number

of light modes or the presence of tachyons. First of all, this exemplefies the difficulty in

finding stable De Sitter. In particular, it points out the lower region of the upper half plane

of this picture as most favorable in this respect. Secondly, this demonstrates the power

of the method based on the sGoldstino mass, especially when compared to the average

of the scalar mass matrix. The latter quantity diverges as one increases |A2|2, while the

maximum for the sGoldstino stays constant.

The lower part of the picture (V < 0) is equally interesting. A large part of the allowed

region sits in the unstable sector while there is a small strip between the BF bound and

the maximum of the sGoldstino mass. Inside this region we see the four sGoldstino masses

corresponding to the geometric type IIA solutions of section 4. Unfortunately here we see

a drawback of our method. Indeed, while not all these solutions are stable, the sGoldstino

masses always sit in the stable sector of the window. This explains our statement that

the sGoldstino captures part of the instability but it’s not parallel to the most unstable

direction in the scalar coset.

There is a further important piece of information which can be read from the picture.

Indeed we see that the on-shell window closes up around (m2, V ) = (−0.27, −0.93), which

is a finite distance above the fully supersymmetric critical point indicated by a bullet at

(m2, V ) = (−2/3,−1). This means there is a gap between the N = 8 supersymmetric

critical point and whichever other critical point in which supersymmetry is partially or

completely broken. In other words, in maximal gauged supergravity, it is impossible to

go smoothly from a maximally supersymmetric critical point to a non supersymmetric

one along a critical path. As mentioned before, this is a consequence of the quadratic

constraints and the field equations: there are no solutions to this combined system which

allow for a smooth limit to the maximally supersymmetric solution.5

From the generality of the argument based on the quadratic constraints, one may

anticipate that this holds true for all supersymmetric critical points: none of these allow for

a smooth deformation into non-supersymmetric critical points. This would imply a minimal

amount of supersymmetry breaking, and hence the absence of the notion of approximate

supersymmetry, in maximal supergravity.

6 Conclusions

This paper addresses a necessary condition for stability of all the critical points of maximal

supergravity apart from the SO(8) theory in the origin, preserving maximal supersymmetry.

All other critical points break either a fraction or all of supersymmetry, and in the latter

cases it has proven difficult to realise stability. Our findings explain why this has been such

a hard task: of the full 912-dimensional parameter space, only a small fraction allows for

a sGoldstino mass that is positive or above the BF bound. Furthermore the sGoldstino

5The same conclusion was reached for N = 4 supergravity via a somewhat different line of reasoning

related to SUSY mass terms [17].

– 18 –



J
H
E
P
0
7
(
2
0
1
2
)
0
3
4

only furnishes a necessary condition, and hence stability with respect to all 70 scalars is

yet harder to realise. It should also be borne in mind that our results, and in particular the

window of figure 1, also includes partially supersymmetric critical points in the AdS region.

Possible extensions of this research include additional constraints on the embedding

tensor, narrowing the search. For instance, if one would only be interested in the SO(8)

theory and its properties, one could look for additional quadratic relations that the em-

bedding tensor everywhere in the moduli space of the SO(8) theory satisfies. However, one

should not expect these relations to be SU(8) covariant for the following reason. Suppose

they can be formulated in SU(8) language, i.e. are covariant with respect to the compact

generators of E7(7). The requirement that they are true in all of moduli space imposes

covariance with respect to the non-compact generators; in other words, they would have to

form E7(7) irreps. At the quadratic level in the embedding tensor, there are five such irreps:

(912× 912)symm = 133 + 8645 + 1463 + 152152 + 253935 . (6.1)

The first two of these correspond to quadratic constraints, satisfied by all theories. We have

explicitly checked that the other three irreps do not vanish for either the SO(8), SO(4, 4),

SO(5, 3) and geometric IIA examples. Therefore one would have to go to e.g. quartic level

to find SU(8) covariant expressions that restrict one to a specific theory such as the SO(8)

one. There is a singlet in the four-tuple symmetric product of the 912. Imposing this to

vanish would correspond to an additional hypersurface in the space of quartic variables,

and thus narrow down the range of the sGoldstino mass.

Other interesting future research directions include a refinement of our analysis by also

considering scalar partner of the would-be Goldstone boson in the case of gauge symmetry

breaking, in addition to the Goldstino partner in the case of SUSY breaking [27]. These

are clearly intertwined in the present case, as only the SO(8) critical point preserves both

all supersymmetry and gauge symmetry. Similarly, it would be interesting to analyse in-

flationary properties of the scalar potential of maximal supergravity along the lines of [28].

Finally, our method of analysing the constraints on quartic relations of the gauge parame-

ters and the resulting consequences for the sGoldstino mass can be applied to other cases,

including e.g. the open problem of N = 2 supergravity coupled to vector multiplets.
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A Derivation of the constraints on the coordinates

A.1 Quadratic constraints

Starting from the quadratic constraints in every irreducible representation and taking the

product with a complex conjugate representation we can construct a series of equalities
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which are quartic in the embedding tensor components. In order to do so in an exhaus-

tive way, one needs to look at the products of two embedding tensors, and see which of

the resulting irreps are complex conjugate to a quadratic constraint. The list of tensor

products reads

(36× 36)s = 330 + 336 ,

36× 36 = 1 + 63 + 1232 ,

(420× 420)s = 70 + 336 + 336 + 378 + 3584 + . . . ,

420× 420 = 1 + 2 · 63 + 2 · 720 + 945 + 945 + 1232 + 1764 + 2 · 2352 + . . . ,

36× 420 = 70 + 378 + 3584 + . . . ,

36× 420 = 720 + 945 + . . . , (A.1)

where we have only explicitly given the irreps up to and including dimension 3584. Then

we could take the following products

63 × Au
vziAuvzm , Am

uvzAiuvz , AmuA
iu ,

70− × At
u[ijAu

t|kl] , At
[ijkAl]t ,

378 × εabcdeijkAldefA
f
abc , At

ijkAlt ,

945 × Am
tuiAjntu , AmnA

ij ,

2352 × At
ijkAtmnp , A[m

t[ijAk]np]t ,

3584 × Ai
ja[mAa

npq] , Ai
[mnpAq]j (A.2)

In the main body of the paper we have reported in (3.10) only the independent relations

obtained in this way. Regarding the equations of motion, the procedure is almost the same.

Taking the product

equations of motion × At
u[ijAu

t|kl] , At
[ijkAl]t , (A.3)

we get the equations (3.11).

A.2 Constraints coming from irreps

Turning to the irreps, in principle we can use any of the irreps in the tensor product (A.1),

take the product with the complex conjugate, and obtain a quadratic expression in ~x and

~z which must be positive. However, we can always leave out the quadratic constraints,

as these will only lead to quartic inequalities that are saturated by the quartic relations

derived above and listed in (3.10).

It’s worth to give an example. Take for instance the case of the 63. We could write a

three parameter combination

α1Ai
rstAmrst + α2Ar

stmArsti + α3AirA
mr − 1

8
(α1 + α2) δ

m
i |A2|2 −

1

8
α3 δ

m
i |A1|2 ,

belonging to this irrep. However, we can always use the two independent quadratic con-

straints in (2.8) to express everything in terms of a one parameter family. For instance

αAirA
mr − 1

8
α δmi |A1|2 . (A.4)
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Therefore the number of independent combinations (and hence the number of parameter)

appearing in any constraint will be obtained taking the non-trivial irreps in (A.1) and

subtracting the number of quadratic constraints in that irreps. We list here the independent

combinations in every irrep. The inequalities (5.2)–(5.10) are obtained taking the product

with the complex conjugate expression.

For the 70 we find a two-parameter family

β1A
r
s[ijA

s
r|kl] + β2A

r
[ijkAl]r . (A.5)

As already mentioned in the text, the constraints coming from the 330 are implied by the

others while in those coming from the 336 there are other variables, not present in the

list (3.3). Adding them will not give any additional information. Thus we do not consider

them. For the 378 we find a one parameter combination

δ1A
r
ijkAlr + δ1A

r
l[ijAk]r . (A.6)

In the 720 the situation is a bit more complicated because we don’t have any quadratic

constraint dwelling in this irrep. Thus we have to consider the full three parameter com-

bination given by

ε1Ar
smnArsij + 2 ε2A[i

rs[mAn]j]rs +
1

3
(−2 ε1 + ε2) δ

[m
[i Ar

n]stArj]st

+
1

3
ε2 δ

[m
[i Aj]

rstAn]rst +
1

21
(ε1 − ε2) δmnij |A2|2 + ε3A

[m
ijrA

n]r . (A.7)

Taking the product we find (5.5). For the 945 it’s sufficient to take the term

ζ1A
(m

ijrA
n)r . (A.8)

In the 1232 again there are no quadratic constraints and we need to consider the following

expression

2 η1A(i
rs(mAn)j)rs −

1

5
η1 δ

(m
(i Ar

n)stArj)st −
1

5
η1 δ

(m
(i Aj)

rstAn)rst

+
1

45
η1 δ

(m
(i δ

n)
j) |A2|2 + η2AijA

mn − 2

5
η2 δ

(m
(i Aj)rA

n)r +
1

45
η2 δ

(m
(i δ

n)
j) |A1|2 . (A.9)

For the 1764 we find a one-parameter family

θ1A[i
[mnpAq]jkl] +

1

2
θ1 δ

[m
[i Ar

npq]Arjkl] +
9

2
θ1 δ

[m
[i Aj

r|npAq]kl]r

− 3

2
θ1 δ

[mn
[ij Ar

pq]sArkl]s + 3 θ1 δ
[mn
[ij Ak

rs|pAq]l]rs

+
3

4
θ1 δ

[mnp
[ijk Ar

q]stArl]st +
1

4
θ1 δ

[mnp
[ijk Al]

rstAq]rst −
1

20
θ1 δ

mnpq
ijkl |A2|2 . (A.10)

For the 2352 we find a one-parameter family

ι1Ar
mnpArijk −

9

4
ι1 δ

[m
[i Ar

np]sArjk]s +
9

10
ι1 δ

[mn
[ij Ar

p]stArk]st −
1

20
ι1 δ

mnp
ijk |A2|2 . (A.11)

And finally for the 3584 we find a one-parameter family

κ1A
i
jv[mA

v
npq] +

1

12
κ1 δ

i
j A

r
s[mnA

s
s|pq] −

2

3
κ1 δ

i
[mA

r
sj|nA

s
pq]r . (A.12)
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A.3 Riemann tensor

The Riemann tensor for the coset space E7/SU(8) can be written in the form

RABDE =
1

4
fABC f

C
DE +

1

2
fABI f

I
DE +

1

8
fACD f

C
BE −

1

8
fACE f

C
BD , (A.13)

where f are the structure constants of the group E7, the indices A,B, . . . refer to the non-

compact generators while the indices I, J, . . . refer to the compact ones.

Thus, in our case, in SU(8) notation, A ≡ [ijkl] and I ≡ i
j . In order to obtain the structure

constants we use the definition

[tA] fABC =
[

[tB], [tC ]
]
. (A.14)

The explicit form of the generators in the fundamental representation is the following

[tijkl] =

[
0 (tijkl)mnpq

(tijkl)
mnpq 0

]
=

[
0 1

24εijklmnpq
δmnpqijkl 0

]
,

[ti
j ] =

[
(ti

j)mn
pq 0

0 (ti
j)mnpq

]
=

[
−δj[m δ

pq
n]i −

1
8δ
j
i δ
pq
mn 0

0 δj[p δ
mn
q]i + 1

8δ
j
i δ
mn
pq

]
. (A.15)

This gives the following equations for the structure constants

[ti1j1k1l1 ] f i1j1k1l1 , i2j2k2l2, i3j3k3l3 =
[

[ti2j2k2l2 ], [ti3j3k3l3 ]
]
,

[ti1j1k1l1 ] f i1j1k1l1 , i2
j2
, i3j3k3l3 =

[
[ti2

j2 ], [ti3j3k3l3 ]
]
,

[ti1
j1 ] f i1j1 , i2j2k2l2, i3j3k3l3 =

[
[ti2j2k2l2 ], [ti3j3k3l3 ]

]
. (A.16)

From the very form of the generator we can argue that

f i1j1k1l1 , i2j2k2l2, i3j3k3l3 = 0 . (A.17)

This can be phrased in other words saying that E7/SU(8) is a symmetric space as the

commutator between two non-compact generators is proportional to a compact generator

[k, k] = h. Moreover the expression for the Riemann tensor gets a bit simplified.

Ri1j1k1l1 , i2j2k2l2, i3j3k3l3, i4j4k4l4 =
1

2
f i1j1k1l1 , i2j2k2l2,m1

n1 fm1
n1, i3j3k3l3, i4j4k4l4

= −1

2
f i1j1k1l1 ,m1

n1
, i2j2k2l2 f

m1
n1, i3j3k3l3, i4j4k4l4 . (A.18)

Applying (A.16) and using the explicit form of the Cartan-Killing metric καβ = Tr{tα tβ}

κijkl,mnpq =
1

12
εijklmnpq , κi

j
, k
l = 3

(
δliδ

j
k −

1

8
δji δ

l
k

)
, (A.19)

we can extract the remaining structure constants

f i1j1k1l1 ,m1
n1
, i2j2k2l2 = 2

(
δi1j1k1l1m1[i2j2k2

δn1

l2]
+

1

8
δi1j1k1l1i2j2k2l2

δn1
m1

)
,

fm1
n1, i3j3k3l3, i4j4k4l4 =

1

36

(
εi4j4k4l4n1[i3j3k3δ

m1

l3]
− εi3j3k3l3n1[i4j4k4δ

m1

l4]

)
. (A.20)
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These lead to

Rm1n1p1q1,m2n2p2q2
i3j3k3l3, i4j4k4l4 =

4

3

(
1

4
δm1n1p1q1
i4j4k4l4

δm2n2p2q2
i3j3k3l3

− 2 δm1n1p1q1
bi4j4k4di3 δ

m2n2p2q2
l4cj3k3l3e

+ 2 δm1n1p1q1
bi4di3j3k3 δ

m2n2p2q2
j4k4l4cl3e −

1

4
δm1n1p1q1
i3j3k3l3

δm2n2p2q2
i4j4k4l4

)
.

(A.21)

Define the sectional curvatures in the following way

RQQ = Rm1n1p1q1,m2n2p2q2
i3j3k3l3, i4j4k4l4 Qm1n1p1q1

i3j3k3l3 Qm2n2p2q2
i4j4k4l4 ,

RQP = Rm1n1p1q1,m2n2p2q2
i3j3k3l3, i4j4k4l4 Qm1n1p1q1

i3j3k3l3 Pm2n2p2q2
i4j4k4l4 ,

RPP = Rm1n1p1q1,m2n2p2q2
i3j3k3l3, i4j4k4l4 Pm1n1p1q1

i3j3k3l3 Pm2n2p2q2
i4j4k4l4 , (A.22)

they take the form (5.12).
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