17 research outputs found

    Coupled orbit and attitude dynamics of a reconfigurable spacecraft with solar radiation pressure

    Get PDF
    This work investigates the orbital and attitude dynamics of future reconfigurable multi-panel solar sails able to change their shape during a mission. This can be enabled either by changing the relative position of the individual panels, or by using articulated mechanisms and deployable, retractable and/or inflatable structures. Such a model introduces the concept of modular spacecraft of variable morphology to large gossamer spacecraft. However, this joint concept is complex in nature and requires equations for coupled orbit/attitude dynamics. Therefore, as a starting point, the system is modelled as a rigid-body dumbbell consisting of two tip masses connected by a rigid, massless panel. The system is subjected to a central gravitational force field under consideration of solar radiation pressure forces. Therefore, we assign reflectivity coefficients to the tip masses and a high area-to-mass ratio. An analytical Hamiltonian approach is used to describe the planar motion of the system in Sun-centred Keplerian and non-Keplerian circular orbits. The stability and controllability of the system is enabled through changing the reflectivity coefficients, for example through the use of electro-chromic coating on its surface. The creation of artificial unstable equilibria of the system due to the presence of solar radiation pressure and heteroclinic connections between the equilibria are investigated. We further derive a constraint for the solar radiation pressure forces to maintain the system on a circular Sun-centred orbit. It is planned that the structure is eventually capable of reconfiguring between the equilibria by a minimum actuation effort

    Shape-changing solar sails for novel mission applications

    Get PDF
    In order to increase the range of potential mission applications of solar sail technology, this paper introduces the concepts of shape change and continuously variable optical properties to large gossamer spacecraft. Merging the two concepts leads to the idea of solar sails as multi-functional platforms that can have potential benefits over conventional solar sails by delivering additional key mission functions such as power collection, sensing and communications. To this aim, the paper investigates the static deflection of a thin inelastic circular sail film with a variable surface reflectivity distribution. The sail film is modelled as a single surface framed by a rigid supporting hoop structure. When changing the reflectivity coefficient across the sail surface, the forces acting on the sail can be controlled without changing the incidence angle relative to the Sun. In addition, by assigning an appropriate reflectivity function across the sail, the load distribution due to solar radiation pressure can also be manipulated to control the billowing of the film. By an appropriate choice of reflectivity across the sail, specific geometries can be generated, such as a parabolic reflector, thus enabling a multi-functional sail. This novel concept of optical reconfiguration can potentially extend solar sail mission applications

    Optical control of solar sails using distributed reflectivity

    Get PDF
    The dynamics of solar sails with a variable surface reflectivity distribution are investigated. When changing the reflectivity across the sail film, which can be achieved using electro-chromic coatings, the solar radiation pressure forces and torques across the sail film can be controlled without changing the attitude of the spacecraft relative to the Sun and without using mechanical systems. The paper presents two approaches. First, a continuous reflectivity distribution is presented to control the sail attitude under the influence of, for example, gravity gradient torques in Earth orbit. The second approach assumes discrete on/o reflectivity regions across the surface. Both concepts of `optical reconfiguration' of solar sails enable a more flexible steering of the spacecraft and minimize actuation effort

    Ultra-Rare Genetic Variation in the Epilepsies : A Whole-Exome Sequencing Study of 17,606 Individuals

    Get PDF
    Sequencing-based studies have identified novel risk genes associated with severe epilepsies and revealed an excess of rare deleterious variation in less-severe forms of epilepsy. To identify the shared and distinct ultra-rare genetic risk factors for different types of epilepsies, we performed a whole-exome sequencing (WES) analysis of 9,170 epilepsy-affected individuals and 8,436 controls of European ancestry. We focused on three phenotypic groups: severe developmental and epileptic encephalopathies (DEEs), genetic generalized epilepsy (GGE), and non-acquired focal epilepsy (NAFE). We observed that compared to controls, individuals with any type of epilepsy carried an excess of ultra-rare, deleterious variants in constrained genes and in genes previously associated with epilepsy; we saw the strongest enrichment in individuals with DEEs and the least strong in individuals with NAFE. Moreover, we found that inhibitory GABA(A) receptor genes were enriched for missense variants across all three classes of epilepsy, whereas no enrichment was seen in excitatory receptor genes. The larger gene groups for the GABAergic pathway or cation channels also showed a significant mutational burden in DEEs and GGE. Although no single gene surpassed exome-wide significance among individuals with GGE or NAFE, highly constrained genes and genes encoding ion channels were among the lead associations; such genes included CACNAIG, EEF1A2, and GABRG2 for GGE and LGI1, TRIM3, and GABRG2 for NAFE. Our study, the largest epilepsy WES study to date, confirms a convergence in the genetics of severe and less-severe epilepsies associated with ultra-rare coding variation, and it highlights a ubiquitous role for GABAergic inhibition in epilepsy etiology.Peer reviewe

    Designing a Solar Sail

    No full text

    Inverse problem for shape control of flexible reflectors using distributed solar pressure

    Get PDF
    This paper investigates controlled elastic deflection of thin circular space reflectors using an inverse problem approach to non-linear thin membrane theory. When changing the surface reflectivity across the membrane, the distributed loads due to ambient solar radiation pressure can be manipulated optically, thus controlling the surface shape without using mechanical or piezo-electric systems. The surface reflectivity can in principle be modulated using uniformly distributed thin-film electro-chromic coatings. We present an analytic solution to the inverse problem of finding the necessary reflectivity distribution that creates a specific membrane deflection, for example that of a parabolic reflector. Importantly, the reflectivity distribution across the surface is found to be independent of membrane size, thickness and solar distance, enabling engineering of the reflectivity distribution directly during the manufacture of the membrane
    corecore