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This work investigates the orbital and attitude dynamics of future reconfigurable multi-panel solar sails able to change
their shape during a mission. This can be enabled either by changing the relative position of the individual panels, or
by using articulated mechanisms and deployable, retractable and/or inflatable structures. Such a model introduces the
concept of modular spacecraft of variable morphology to large gossamer spacecraft. However, this joint concept is
complex in nature and requires equations for coupled orbit/attitude dynamics. Therefore, as a starting point, the system
is modelled as a rigid-body dumbbell consisting of two tip masses connected by a rigid, massless panel. The system
is subjected to a central gravitational force field under consideration of solar radiation pressure forces. Therefore, we
assign reflectivity coefficients to the tip masses and a high area-to-mass ratio. An analytical Hamiltonian approach
is used to describe the planar motion of the system in Sun-centred Keplerian and non-Keplerian circular orbits. The
stability and controllability of the system is enabled through changing the reflectivity coefficients, for example through
the use of electro-chromic coating on its surface. The creation of artificial unstable equilibria of the system due to the
presence of solar radiation pressure and heteroclinic connections between the equilibria are investigated. We further
derive a constraint for the solar radiation pressure forces to maintain the system on a circular Sun-centred orbit. It is
planned that the structure is eventually capable of reconfiguring between the equilibria by a minimum actuation effort.

I. INTRODUCTION However, the solar radiation pressure (SRP) force vec-
tor is limited to be always directed away from the Sun
and its magnitude follows an inverse square law with so-
lar distance, making the sail less efficient at large dis-
tances from the Sun'. In order to increase the range of
potential mission applications, it is envisaged to use the
solar sail as a multi-functional platform that can deliver
additional key mission functions such as power collec-
tion, sensing, communications and a more flexible SRP

Solar sail technology offers a new capability to enable
fast, efficient and low cost science missions throughout
the Solar System. Solar sails exploit the flux of mo-
mentum transported by solar photons and thus do not
require any propellant. The mission time is in princi-
ple only limited by the lifetime of the onboard subsys-
tems and the integrity of the lightweight sail membrane.
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Figure 1: Modelling of reconfigurable gossamer spacecraft,
segmented in phase I to IV

force vector control. For example, the sail could start
at Earth in a flat configuration on a small body science
mission towards a designated object like an asteroid or
comet. In close proximity to the target body, the sail re-
configures to a parabolic shape, using its membrane as a
remote sensing device, before continuing again in a flat
thrust mode. Such a platform introduces the concept of
modular spacecraft of variable morphology to large gos-
samer spacecraft®>3. In order to understand the dynamics
of such reconfigurable spacecraft, the following roadmap
defines a number of consecutive phases. As can be seen
in Fig. 1, the identified phases gradually increase the
complexity of the system, starting with a configuration
of two lumped masses in phase I. After replacing the in-
dividual masses by a continuous panel in phase II, the
number of masses will be increased in phase III to ap-
proximate a system of multiple possible shapes. In the
last phase IV, the discrete n-body formation will again be
replaced by a flexible continuous panel, offering a multi-
functional platform for space missions.

The initial approach presented in this paper describes
the planar motion of a rigid two-body dumbbell system
in a Sun-centred orbit and under the effect of SRP forces.
Hereby, we adapt the widely used model of a tethered
satellite system (TSS)*. The SRP forces are introduced to
the system as acting solely on the tip masses and only in
radial direction away from the Sun, assigning a variable
surface reflectivity to the masses. After describing the
dynamical model in section II, we present the system’s
Hamiltonian and the equations of motion (EOM) for the
coupled orbit/attitude motion in section III. By introduc-
ing a central bus mass, the EOM are further decoupled
from the orbit (section IV). Under the assumption that
the system’s centre of mass (CoM) stays on a circular

IAC-12-C1.9.10

orbit, analytical formulations are derived in section IV.I
for the decoupled case, showing that the relative equi-
libria depend on the reflectivity of the two masses. We
demonstrate that through introduction of SRP forces to
the problem, artificial equilibrium attitudes can be gen-
erated that vary from the ones well-known from the pure
gravity gradient dumbbell’. In section IV.II, we are rein-
troducing the coupling of the orbit and attitude dynam-
ics by deriving constraints for the reflectivity coefficients,
showing that without the central bus mass, the dumbbell
can also be maintained on a circular non-Keplerian or-
bit using SRP. The dynamical behaviour of the system is
shown in section IV.III through equal energy curves of
the Hamiltonian in phase space and a stability analysis.
Within section IV.IV, motion between and controllability
around the equilibria are demonstrated in the phase space
of the problem through heteroclinic connections and by
changing the surface reflectivity.

II. DYNAMICAL MODEL DESCRIPTION

The planar motion of the dumbbell system is described
with respect to a Sun-centred inertial frame Z: (X,Y") in
the case of the coupled orbit/attitude problem and rela-
tive to a rotating orbit frame O : (r, t), originating in the
CoM of the system for the decoupled attitude dynamics
(Fig. 2). The axes of frame O are aligned with the local
vertical and the local horizontal relative to the Sun.

Figure 2: Geometry of dumbbell system in Sun-centred orbit
with SRP forces

The system is modelled as a rigid body with a cen-
tral bus mass Mp and two variable tip masses m4 and
mg at each end of a massless panel. The dimensionless
dumbbell parameter A = [/ R describes the ratio of panel
length [ to orbit radius R and the three bodies are ap-
proximated as point masses. Mp is located in the CoM
of the system with My > m;. The dynamics within the
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Sun’s gravitational field are extended by introducing SRP
forces to the two tip masses, assigning arbitrary lightness
numbers 3; = [0,1]. The lightness number of an ob-
ject describes the ratio of its acceleration due to SRP and
gravitational force. Bodies with a high surface reflec-
tivity and a high area-to-mass ratio own a high value of
(. Compared to the tip masses, the area-to-mass ratio of
the central bus mass is assumed to be very small, so the
lightness number of My can be neglected. The position
vectors of the CoM and the two masses are described us-
ing time-dependent polar coordinates: the radial distance
from the central body R(t) and the true anomaly v(t).
Further, the angle 6(t) represents the dumbbell attitude
relative to the inertial X-axis. In the following, the time
variable ¢ will be omitted to improve readability. For a
rigid body, the position vector R of the CoM in the frame
7 is described as

1 n
R=— ;miRi (1)

using the total mass M = mj +mqy+ Mp. With respect
to the inertial frame Z, the position vectors are

R=R (Cf)s ”) (2a)
sin v
R1 =R + ry, R2 =R+ Iro (Zb)
B mal cosf
n= _ml +meo <sin 9> (2¢)
B mal cos
2= mi+ms (sin@) (2d)

The norms of the position vectors are

2
Ry — \/Rz_lechos(y—G) +( Imo ) 3a)

mi1-+me m1+ma2

lm1 2
+ 3b
(ml +m2) ©b)

Ry — \/R2+ 2lm1 R cos(v—0)

mi1-+ma

III. COUPLED EQUATIONS OF MOTION

The coupled orbit/attitude EOM of the two-mass
dumbbell are derived through formulation of the sys-
tem’s Hamiltonian in the inertial frame®. Using the
Euler-Lagrange equations, the coupled EOM are for-

mulated using the second derivatives R (), i(t) and 6(t).

IAC-12-C1.9.10

Potential and Kinetic Energy

Within the potential energy function, the SRP forces
are added to the gravitational forces. We assume that the
SRP force on the tip masses solely acts in radial direc-
tion. As a result of this assumption, the SRP forces may
be included into the potential energy function, since they
are supposed to originate from a conservative force field.
Introducing a so called effective gravitational parameter
f; = p(1—B;) for each mass within the potential en-
ergy function, this parameter represents the reduced ef-
fect of the gravitational force due to a radially outward
SRP force. The effective potential energy V of the sys-
tem can now be written as

2
puMp im;
v s
R ; R;

CpMy opmi(1-B1)  pma(1—Ps)
R Ry Ry

“

Note that, recalling the above expressions for the norms
R; from Eq. 3, the effective potential energy of the SRP
dumbbell depends on the radial position R of the CoM,
the angles v and 6, the masses m; and the lightness num-
bers f3;.

The kinetic energy is split up into a translational part
Tiranst attached to the CoM and a rotational part T, rep-
resenting the contribution of the two rotating masses to
the total kinetic energy

1 .. 1 )
Thranst = §MRR = §(m1 —+ mo + MB)(R2 + R21)2) (Sa)

2
1 .. 1 .. 1 ..
Tiot = 5 ;miriri = gmufif + PILELE

1 m1m2l2 53
= - e g 5b
2m1 4+ meo (55)

Coupled Hamiltonian

Using the Lagrangian L = T — V and introducing
three generalized coordinates g; = (R, v, 6), the Hamil-
tonian of the dynamical system can be written as

3
oL . 9L 9L 0L
Hfga—q,iqifoR%er%Jr@%fL (6)

In this approach, no non-conservative external forces are
acting on the system and time does not appear explicitly
in the expressions for the potential and kinetic energy, so
the Hamiltonian is a constant of motion’. Calculating the
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generalized momenta p;

oL .
= — = (mi+me+Mp)R 7a
P1 Y2 (mq 2 B) (7a)
oL
p2= = (my+my+Mg)R*w (7b)
oL m1m212 .
- =" 9 7c
P35 =96 = mitma (7)

the non-dimensional coupled Hamiltonian H of the Sys-
tem is found after dividing H by 3 (m +mo)21?

S 2 1 . .
H = W 5(7’)’7,1 +7TL2)(R2 + R2l/2)
(3)
Lmamal® s pma(1=p1)  pma(1-F2)
2 mi+ma Ri Rs

Note that the coupled Hamiltonian H is a function of the
free parameters [3;, besides the dumbbell parameters m;
and [.

Euler-Lagrange Equations

According to Hamilton’s principle and using the gen-
eralized coordinates g (t), k = 1, ..., n, the trajectory of
q(t) = (q1(t), ..., gn(t)) through the configuration space
satisfies the Euler-Lagrange equations’

d(or\ or
i) w0 @

Using the above equation, the coupled EOM of the two-
mass dumbbell including SRP can be formulated as

iz 4 1Mo (1) (R — el ) (10a)
MR? D
s (1-B2) (R + treestos)

+ e ) - Rl/2 = 0

ME3

P umimel sin(6—v) ((1ﬁ2) B (1/61)> (10b)

M(m1 +m2)R R% R?
2Rp
+=5 =0

s pRsin(0—v) [ (1-p1) (1-p2)\ _
0+ ] < R% — R§ >—0 (10c)
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IV. DECOUPLED EQUATIONS OF MOTION

Assuming a central bus mass Mg > m;, it can be
shown that the attitude motion of the system decouples
from the orbit dynamics, thus Eqs. 10a and 10b reduce
to the common 2-B-P of a single mass in a central grav-
itational field and no longer depend on the dumbbell at-
titude 6. Introducing the above condition for Mg into
Eq. 10 results in the decoupled EOM of the dumbbell
including SRP

b %b —0 (11b)
s pRsin(0—v) ((1-51) (1-P2))\ _
0+ ] ( R R ) =0 (o)

When the CoM of the system initially follows a circular
orbit with 7 = /u/R3 and R = 0, Eqs. 11a and 11b
further reduce to R = O and i = 0, respectively. The true
anomaly v is a cyclic variable and arbitrary (including
zero) along a circular orbit, thus Eq. 11c can now be

written as

i pRsing ((1-51) (1-52) ) _
0+ — (R% RS >_0 (12

The same decoupled attitude EOM (Eq. 12) can be
obtained through derivation of the system’s Hamiltonian
in the rotating orbit frame O : (r, t), without considering
the central mass Mg, as shown in Figure 3. This second
approach for the decoupled problem is given to show that
the resulting attitude EOM is consistent with the one ob-
tained from the introduction of My before.

t

m;

B2

O mmmm-teeeyt
r

"B

Figure 3: Geometry of dumbbell system with SRP for the
decoupled attitude problem with respect to the rotating orbit
frame O: (r, t), centred in the CoM
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The dumbbell attitude is now described using the angle
~ with respect to the local vertical. The CoM is again
assumed to move along a circular orbit with angular ve-
locity w. Without using Mp as before, this only holds
true for very small ratios A < 1. However, we will show
later that a constraint can be introduced to the lightness
numbers f; to satisfy this assumption exactly (see section
IV.ID). In the rotating orbit frame O, the relative position
of the CoM is always

1 n
=———> mr;=0 (13)
=1

r
CoM my+ms

For the decoupled problem, the position vectors are
transformed into the rotating frame, using R = (R, 0)7
for the CoM and the position vectors R; now being a
function of the angle ~

Ri=R+ir = (R) -y <Cf)”) (14a)
0 mi +ms \sinvy

Ro=R+rs= (R> LMy (COSV) (14b)

0 m1 +mg \sinvy

Potential and Kinetic Energy

For the decoupled case, only the rotational part of the
kinetic energy
1 miq m2l2

Thot = =
rot 2my + my

(32 4 24w + w?) (15)
is considered. The potential energy is used again as de-
scribed before in the coupled case (Eq. 4, with My =
0). However, since now only the attitude motion of the
dumbbell is considered, the orbital potential energies of
the CoM due to gravitational and SRP forces

p(ma+mo)

w(mafi + maf2) (16)
R

‘/(yrb = - R

5 ‘/orb.SRP -
are substracted from V within the decoupled Lagrangian

Ldec = Trol - Vrot = Trotf (Vf‘/orbf‘/orb,SRP) (17)

Decoupled Hamiltonian

The Hamiltonian Hg.. is now reformulated using only
q1 = 7 as the generalized coordinate. With the corre-
sponding generalized momentum

oL mymal? (¥ + w)

=5 = (18)

b1 M1+ s

IAC-12-C1.9.10

the non-dimensional Hamiltonian H .. is found as

e — 2 1 mymal? ('27w2)
dee = (m1+m2)w?l? | 2 mi+me K
+ ,u(ml"'m?) _ :U’(mlﬂl + m2ﬂ2) (19)
R R

pmi(1=P51)  pma(1-B2)
Ry Ro

Using again Eq. (9), the decoupled EOM of the dumbbell
with SRP can be written in terms of the attitude angle ~y
in the rotating frame O

.  uRsiny(1-0 1-4
¥+ <R§,1— 332 =0 (20

as equivalent to Eq. 12, and in expanded notation

54 pRsiny [
l
1-p1

(R2 72R mT+2”f’L2 COS’V+ (77:1’:37512 )2) % (21)
_ 16> ] o

(R2+2R s cosy+ (L))

mitma

IV.I EQUILIBRIUM ANGLES AND STABILITY

In this section, we show that the relative equilibria of
the rigid-body dumbbell system in terms of the angle veq
are changing with 3, and 5. For both lightness numbers
being zero and a mass ratio of Kk = 1, the equilibrium
angles are 180, 90 and O degrees and correspond to
the pure gravity gradient dumbbell without SRP. Before
introducing a suitable control strategy to move from one
equilibrium state to another, the dependence of .4 on
the two [-values is described. The dumbbell is in an
equilibrium state whenever the total torque on the system
is zero and thus, the total angular acceleration # is zero.
Solving the decoupled attitude EOM (Eq. 20) for ¥ = 0
gives the equilibrium angle as a function of 31, 32 and
the masses mq, mo

1-80% (1+(7227)°)

(1-61)3 (2212 ) 4 (1 2) 8 (22 )|

Yeq = arccos |: [

+

(1-82)5 (14 (7225)°%) ]
)]

[(1-60)8 (222 )+ (1-2) 5 (222
(22)
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1

Figure 4: Stable (blue) and unstable (red) equilibria eq as a
function of 31 and 32 for the reference dumbbell with A = 0.5

and further as a function of the dimensionless parameter
A = [/ R, the dumbbell length/orbit ratio.

B
1.0

0. / ]ho 1
'8.0 0.2 0.4 0.6 0.8 1.0ﬁ

Figure 5: Possible (81, #2)., sets to create unstable equilibria
Yeq for the reference dumbbell with A = 0.5

In order to evaluate the stable/unstable character of the
equilibria veq, a stability analysis of the decoupled atti-
tude EOM is applied. At first, the 2" order differen-
tial equation given in Eq. (20) is linearized around ~eq
through a Taylor series expansion up to 1% order terms.
Rewriting leads to a linear differential equation system
(DES) of 1st order. When analysing the eigenvalues of
the Jacobian of the DES, two different types of equilib-
ria are obtained: unstable saddle and stable centre. In
the following, the new equilibria of the dumbbell system
that can be created when including SRP are investigated.
Fig. 4 shows the stable (blue) and unstable (red) regions

TIAC-12-C1.9.10

of equilibria .q as a function of 5; and B, for a chosen
reference dumbbell with a very high A = 0.5 and equal
masses my, = mo. The three planes are indicating the
stable equilibria -180, 0 and 180 degrees. It can be seen
that for large values of one of the lightness numbers, the
stable equilibria are transformed into unstable ones, sim-
ilar to the pure gravity gradient dumbbell configuration
with a very large/small mass ratio K = my/ms. The
two red curved planes indicate new unstable equilibria.
Choosing 1 and 5 in the range of [0,1] reduces the
net effective gravitational force on each mass from its
usual value of y/R? to zero. Both effects of the gravity
gradient and the SRP force are proportional to 1/R? or
12, respectively. Further, only the difference between the
forces acting on my or ms are influencing the dynamical
and static behaviour of the system, by causing a resulting
net torque about the CoM. In order to magnify the effect
of the combined gravity and SRP gradient, a dumbbell
with a high A is chosen for illustration.

When solving Eq. (22) for (2, the possible combi-
nations (f31, 82)-,, for a given equilibrium angle, further
referred to as ’3-sets’, can be obtained as

B2(B1,%eq) = 1—

[

1+ (22,) Ja-pf - 222 cosy (1—61)5] :

2
2mao A mo
mi+ma cosy + <M1+'rn2 >

(23)

For the chosen reference dumbbell and for equilib-
rium angles in the interval [0, 180] degrees, the possible
(B1, B2)n,, sets are shown in Fig. 5, parametrized in steps
of Ay = 10 degrees. Each point on one of the curves can
be chosen to create a respective unstable equilibrium at-
titude “yeq-

0.5

B, 0.75

1

Figure 6: Stable (blue) and unstable (red) equilibria ~eq as a
function of scaled 87 and S5 for a dumbbell with ratio A =
1.7x1077
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Figure 7: Possible (81, #2)., sets to create unstable equilibria
7eq for a dumbbell with ratio A = 1.7 x 1077

As amore realistic case, a dumbbell configuration with
equal masses m;, = ms and a dumbbell ratio A = 1.7 x
10~7 is used in Figs. 6 and 7. For example, this ratio
corresponds to a panel length [ = 10 km on a circular
Mercury orbit of radius R = 57,909, 100 km. Both plots
are scaled with a threshold for 3; = 5.2 x 10773} with
B = [0, 1] to improve readability, but the dumbbell can
also be controlled over the full range of 5; = [0, 1].

IV.II CONSTRAINTS ON SRP TO MAINTAIN
CIRCULAR ORBIT

The decoupled EOM are only valid under the assump-
tion that the CoM of the system stays on a circular orbit.
This can be approximated when introducing the condi-
tion A < 1 or a central bus mass. However, any light-
ness number assigned to the masses will cause the sys-
tem to depart from the circular orbit, since through the
additional SRP forces acting exactly in the opposite di-
rection towards the gravitational forces, the force field is
no longer a central Newtonian. The effect of the SRP
is to decrease the effective solar gravity experienced by
the dumbbell, as shown earlier by the introduction of
i = p(1—p5;). This means that any mass with a 3; > 0
on an originally circular heliocentric Keplerian orbit of
radius R and orbit rate wy will experience a reduced net
force compared to the one from pure solar gravity at the
same distance. As a result, the body will depart from
the circular reference orbit in radial outward direction,
since it is moving faster than the local effective angu-
lar velocity @ = +/j1/R3 of the circular non-Keplerian

IAC-12-C1.9.10

orbit. However, when the mass is orbiting with this re-
duced w, it can maintain a circular non-Keplerian orbit of
same radius R. We now derive a constraint for 3, and (3
acting on the two masses that allows the CoM of the sys-
tem to stay on a given circular reference orbit and hereby
reintroduce the coupling of the orbit and attitude dynam-
ics. To this aim, the sum of the forces for the two-mass
dumbbell body formulated in the rotating frame O shall
be equal to the sum of forces acting on a virtual reference
single-mass body of total mass Mcom = mq+mso. The
CoM of both bodies is located on the same circular ref-
erence orbit of radius R. Formulating with respect to the
orbit frame O gives

mi(1—0 mo(1—7
_%Rm _ %Rm _
1 2 24)
[ M,
_WRW){ = const.

The orbit of the reference mass is assumed to be non-
Keplerian by using an effective gravitational parameter
fcom = p(1—PBcom) With Scom being a lightness number
assigned to the reference mass. It is a free parameter that
defines the orbital angular velocity Ocom = v/ ficom/R>
necessary to stay on the non-Keplerian circular reference
orbit. For a given dumbbell with parameters m1, mo and
A, Eq. 24 is a function of the two lightness numbers.
Solving in the radial and transversal direction results in
two constraint equations for 31 and

1— fcom mﬁ]’?zz }f% mgl,r
12 mo 2, mao 2,
= e = h() @5
mo Ra,
1— ficom m1+m22 Rj my Bur
123 mzR R2’ mo }?2Y
= R =) (25h)
+ ma R

with R;, the radial components of the position vectors of
the two masses (Eq. 14). Note that above equations are
coupled through the angle v, thus for any relative attitude
of the dumbbell and a given circular reference orbit, the
constrained [3-set for the two masses is now completely
defined. Figs. 8 and 9 show the constrained (1, 32),,
sets over the range of equilibrium angles [—180, 180] de-
grees. A family of circular non-Keplerian orbits with
decreasing orbit rates w < wq is used, starting with
wo = +/p/R3 for the reference circular Keplerian or-
bit with radius R. Again, the reference dumbbell with
A = 0.5 and equal masses m; = ms is used. It can be
seen in the figures that in case of the reference Keple-
rian orbit (blue line) it is not possible to create any equi-
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librium states without departing from the circular orbit,
since the 3; have opposite signs for all v, within the
range of [—180, 180] degrees and a negative /3 can not be
created from a radial outward SRP force. When decreas-
ing the orbital rate to w = 0.9,0.8 and 0.7 wy (as seen
in Figs. 8 and 9), the region of possible equilibria can
be increased gradually. For @ = 0.7 wy, all equilibrium
attitudes are possible.

—-1.0t

Figure 8: Constrained (31 for the reference dumbbell including
SRP to maintain a circular orbit for a given equilibrium angle

Yeq

167

~180 135

—-1.0t

Figure 9: Constrained (3 for the reference dumbbell including
SRP to maintain a circular orbit for a given equilibrium angle

Yeq
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This non-Keplerian orbit is equivalent to the one created
when assigning a lightness number of Scom = 0.51 to a
reference single body with total mass Mcom. The intro-
duction of the new [3-constraints in addition to the previ-
ously defined sets of possible S-values for the reference
dumbbell (Fig. 5) is now visible in Fig. 10. While the
possible (51, B2),, sets for an equilibrium was a line for
B; = [0, 1], the constraint now restricts the sets to one
point, depending on the chosen orbit rate @ of the non-
Keplerian circular orbit.

B2
1.0

Figure 10: Possible (81, #2)~., sets for the reference dumb-
bell including SRP to create a given equilibrium angle 7., and
superimposed (-constraint for various circular non-Keplerian
orbits

IV.III PHASE SPACE OF THE PROBLEM

In the following, the dynamics of the decoupled prob-
lem are analysed using the above lightness-number con-
straint that allows the CoM of the dumbbell to stay on
a circular non-Keplerian orbit with an orbital rate of
w < wp. Since the decoupled Hamiltonian is a con-
stant of motion, for each value of ﬁdec, the motion of the
system is represented by a two-dimensional phase space
(v, ) with free parameters 3, and (5. Fig. 11 shows the
equal energy curves in the phase space for the reference
dumbbell configuration with A = 0.5 and equal masses
m1 =my. Arrows indicate the direction of motion along
a curve. Whenever the curves are closed, they corre-
spond to librations around the equilibrium point. The
open curves in the phase space correspond to rotations.
Two superimposed phase spaces for different S-sets and
the respective location of the stable and unstable equilib-
ria are visible. The first set (51, 52)1 = (0,0) (black
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Figure 11: Superimposed phase spaces [y, ] of pure dumbbell
without SRP forces (31, 32)1 = (0, 0) (black solid curves) and
with lightness numbers (31, 82)2 = (0.71,0.18) (dashed grey
curves) on a reference Earth orbit. The stable and unstable equi-
libria are shown together with equal energy curves and arrows
indicate the direction of motion along a curve

solid curves) corresponds to the pure gravity-gradient
dumbbell without SRP, showing the unstable equilibria
at +/-90 degrees, together with the stable ones at -180,
0 and 180 degrees (black points). The second set (grey
dashed curves) is chosen according to the derived (-
constraint for restricting the dumbbell on a circular non-
Keplerian orbit (section IV.II). Here, as an example, the
lightness numbers of the two masses are supposed to
shift the unstable equilibria to 245 degree (grey crosses).
For a chosen reference Earth orbit with radius Ry =
149,598,261 km and orbital angular velocity wy =
0.0172 rad/day (0.986 deg/day), the non-Keplerian or-
bit in terms of orbital rate @ and the corresponding set
(81, B2)2 that creates the +45 degree equilibria can be
chosen from Figs. 8 and 9. An orbit with angular ve-
locity @ = 0.7wp = 0.0120 rad/day (0.689 deg/day)
allows for positive (-sets in the full range of attitudes
between [—180, 180] degree. Accordingly, the resulting
B-set is chosen to be (81, 82)2 = (0.71,0.18). Within
the next section, we show possible controlled motion in
phase space through changes in 3; and (5. Hereby, the
dumbbell attitude can be changed and maintained just by
using solar radiation pressure.

IV.IV MOTION IN PHASE SPACE

The phase space (v,+) of the dumbbell system, in-
cluding the positions of the respective equilibria, is char-
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acteristic for a particular 3-set. Switching to another set,
the phase space and the respective equilibria change ac-
cordingly, as seen in the previous section IV.III. We now
exploit these attributes of the system to find heteroclinic
connections between equilibria in the phase space. By
providing a qualitative switching law between different
[-sets, we aim towards arbitrarily changing the attitude
of the dumbbell and further controlling it in the vicinity
of a desired (unstable) attitude.

When inspecting again the superimposed phase space
curves for two different 5-sets as shown in Fig. 11, pos-
sible sequences in phase space in order to change the
dumbbell attitude can be obtained. Whenever the dumb-
bell is in a state at (or close to) an unstable equilibrium
(saddle), there a two directions in phase space for the
system to move away from the saddle. The other two di-
rections always lead towards the unstable point, as can
be seen in Fig. 12.

E
4

0.015 RSSO
0.010

0.005

T 0.000be
=
—0.005F
-0.010
_0.015_.:_.::1-._ -_V-._ P
¥ [rad]
Figure 12: Detail view of superimposed phase spaces [7,7]

of pure dumbbell without SRP forces (81,582)1 = (0,0)
(black solid curves) and with lightness numbers (81, 82)2 =
(0.71,0.18) (dashed grey curves). Two possible sequences are
highlighted: attitude change between unstable equilibria (blue
dashed curve) and control sequence around an unstable equilib-
rium (red dotted curve)

For example, the system can move along the blue dashed
curve away from the +90 degree saddle, as indicated
through the blue arrows in the figure. Likewise, there are
also two directions leading towards the +45 degree sad-
dle of the second phase space (dashed grey lines). When
switching between [-set 1 and 2 at the point in phase
space indicated with a blue ’S’, the dumbbell will con-
sequently change its attitude from +90 to +45 degrees,
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when following the blue path. In order to further con-
trol the dumbbell in the vicinity of an unstable saddle
point, a motion sequence such as the one indicated with
the red dotted curve can be used. When the system ini-
tially moves away from the saddle on one of the outgoing
curves (within phase space 2), then switching to S-set 1
(black solid curves) at the point marked with a red ’1’
will let it further move along the closed loop around the
stable centre of phase space 1. When it reaches point *2’,
which is the crossing with the ingoing curve towards the
saddle, switching again to 3-set 2 will complete a closed
loop around the desired unstable equilibrium of +45 de-
gree.

V. CONCLUSIONS

In this paper an analytical Hamiltonian approach was
used to describe the planar motion of a rigid-body dumb-
bell system including solar radiation pressure (SRP)
forces on the two masses on circular Sun-centred Kep-
lerian and non-Keplerian orbits. The equations of mo-
tion for the coupled orbit/attitude motion were derived
and decoupled through the use of a central bus mass.
We demonstrated that when assigning reflectivity coef-
ficients or lightness numbers to the two tip masses, arti-

ficial unstable equilibria can be generated that are dif-
ferent from the well-known pure gravity gradient dumb-
bell. By controlling the lightness number of the two
masses, the dumbbell attitude can be changed in between
the full range of equilibria, relative to the local vertical.
For certain combinations of lightness numbers, the sta-
ble equilibria even transform into unstable ones, similar
to a dumbbell configuration with a very large/small mass
ratio K = my/msy. Motion between and controllabil-
ity around the new equilibria are demonstrated through
heteroclinic connections in the phase space of the prob-
lem. We further reintroduced the coupling of the orbit
and attitude dynamics by deriving constraints for the two
lightness numbers, showing that without the central bus
mass, the dumbbell can also be maintained on a circular
non-Keplerian orbit using SRP.
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