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Abstract. This paper investigates controlled elastic deflection of thin circular space

reflectors using an inverse problem approach to non-linear thin membrane theory.

When changing the surface reflectivity across the membrane, the distributed loads

due to ambient solar radiation pressure can be manipulated optically, thus controlling

the surface shape without using mechanical or piezo-electric systems. The surface

reflectivity can in principle be modulated using uniformly distributed thin-film electro-

chromic coatings. We present an analytic solution to the inverse problem of finding

the necessary reflectivity distribution that creates a specific membrane deflection, for

example that of a parabolic reflector. Importantly, the reflectivity distribution across

the surface is found to be independent of membrane size, thickness and solar distance,

enabling engineering of the reflectivity distribution directly during the manufacture of

the membrane.

Submitted to: Smart Mater. Struct.
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1. Introduction

Large and lightweight flexible membrane structures pose an interesting concept for

many future space-based applications such as communication antennae [1], scientific

telescopes [2], solar power satellites [3] and solar sail propulsion [4]. Deploying a high-

reflective parabolic membrane in space enables any of these applications. However, it is

essential to keep the system mass as low as possible to reduce launch costs, while at the

same time providing controllability, reliability and accuracy of the surface shape in the

space environment. To this aim, we consider controlling the membrane shape through

ambient solar radiation pressure (SRP) acting on the structure in space. Although being

relatively small in magnitude, about 10µN/m2 at the Earth’s distance from the Sun,

SRP has already been used successfully for passive attitude control of satellites [5] and

for continuous propulsion of solar sail spacecraft [6]. Since the aperture size of a space

reflector is expected to be in the order of 100 m in diameter, for example, to maximise

spatial resolution or antenna gain, light pressure applies a reasonable force sufficient to

deflect a thin reflective film. However, it will be shown in this paper that the nominal

deflected profile of the membrane due to uniform SRP loads is in fact non-parabolic

in shape. Since only a parabolic surface can focus electro-magnetic radiation into a

single point, in order to realise the proposed applications of antennae, telescopes and

solar power collection, the light pressure distribution has to be modulated across the

membrane.

The force exerted on a surface by solar photon momentum essentially depends on

the reflectivity coefficient of the material [4]. The higher the reflectivity the higher the

total force, since fewer photons are absorbed or diffusely scattered by the material. The

surface reflectivity can in principle be modified using thin-film electro-chromic coatings,

which consist of an electro-active material that changes its reflectivity according to an

applied electric charge [7], or by engineering a reflectivity distribution directly during

the manufacture of the membrane. Thin-film liquid crystal devices have already been

employed successfully for attitude control on the first solar sail in space, IKAROS

(Japan), in 2010 [6]. When modulating the reflectivity, non-uniform SRP loads can

be generated for controlled membrane deflection without using additional mechanical

or piezo-electric control actuators, as for example shown in [8].

In section 2, we first introduce the governing equations of thin circular elastic

membrane deflection subject to uniform vertical load, where the membrane (including

electro-chromic coatings) is assumed to be of uniform thickness (isotropic). Since the

surface experiences relatively large deflections from the initially flat shape, it requires

the use of non-linear bending theory [9], accounting for the non-negligible in-plane ten-

sion within the material. The nominal deflection profile due to uniform SRP loads

will be assessed first in section 3, for different membrane radii and distances from the

Sun. Furthermore, in section 4, suitable reflectivity functions across the surface will be

used to modulate light pressure loads for controlled surface deflection. It will be shown

that when a particular deflection shape is selected a priori, e.g. a parabolic profile, the
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Figure 1. Schematic of circular space membrane reflector with thin-film electro-

chromic coatings uniformly distributed across the surface to modulate light pressure

load (left) and supporting rigid hoop structure (right).

required reflectivity distribution can be calculated by formulating an inverse problem

(section 4.1). Resulting paraboloid-type deflection shapes and deflection magnitudes

will be evaluated in section 5 in terms of the achievable focal lengths as function of

aperture radius and solar distance.

2. Membrane deflection using variable solar pressure loads

The reflector is modelled using a thin polyimide Kapton film, a material likely to be used

for future space membrane structures due to its high resistance to extreme temperatures

and radiation [10]. The membrane is supported by a circumferential hoop structure,

forming hinged-support type boundary conditions at the edges. The SRP loads are

calculated using a simplified SRP model [4]. It assumes that the membrane surface

is a perfectly (specular) reflecting mirror, such that the resulting SRP force is always

perpendicular to the surface. Therefore, the model neglects all other forms of optical

interactions between the solar photons and the material such as scattering, absorption

and thermal re-emission. In particular, a real surface would absorb a fraction of the

photons and emit the energy as thermal radiation, creating an additional in-plane

transversal force component due to non-ideal reflectivity. The model also does not

account for wrinkles, and thus assumes a perfectly flat surface. Accordingly, the solar

radiation pressure pSRP can be written as

pSRP = p0 [1 + ρ(r)]

(
RS,0

RS

)2

cos2 α (1)
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at a radial distance RS from the Sun, with the pitch angle α between the Sun-

reflector line and the surface normal, and p0 = 4.563× 10−6 N/m2 the light pressure at

RS,0 = 1 AU = 149, 597, 871 km (Astronomical Unit). Prior to deflection, the membrane

surface is assumed to be perpendicular to the Sun-reflector line, thus α = 0. Electro-

chromic thin-film coatings are further assumed to be uniformly distributed across the

surface, as shown schematically in figure 1, while neglecting the additional mass and

thickness that would be introduced to the membrane. Ideally, these coatings are capable

of modulating the surface reflectivity ρ in the interval 0 ≤ ρ ≤ 1. When now assuming

that the membrane reflectivity is no longer constant, but changes across the surface,

the local SRP becomes a function of reflectivity ρ(r) at the radial position r from

the centre of the membrane. In here, ρ(r) = 1 represents a perfectly reflecting mirror

that experiences the maximum possible SRP pSRP,max = 2p0, while ρ = 0 reduces the

effective SRP load to pSRP,max/2 = p0, because (ideally) no photons are reflected and only

the momentum of the incoming photons applies a force to the surface. Consequently,

the induced light pressure forces can be modified directly when changing the surface

reflectivity.

In the present analysis, only the static structural bending of the membrane is

accounted for, ignoring any dynamical response (e.g. vibrational modes) of the real

structure due to time-dependent loads, movements of the structure or flexibilities in

the supporting hoop. A thin circular isotropic membrane of radius R and thickness d

under uniform vertical SRP load FSRP, created by the solar radiation pressure pSRP,

is shown in figure 2. Due to the very small thickness and relatively large deflections

w (i.e. a high W = w/d ratio), non-linear theory of circular membranes needs to be

considered. In general, thin membrane-like structures offer a very small flexural rigidity

and therefore cannot resist bending loads [11]. Furthermore, radial and transversal in-

plane tensions are non-negligible, while for low W ratios, they are usually ignored within

the well-known linear beam theory [12]. The symmetrical out-of-plane deflection can be

described by a second-order non-linear coupled system, according to [13, 14], as

d3w

dr3
+

1

r

d2w

dr2
− 1

r2
dw

dr
− N0

D

dw

dr
− Ñr

D

dw

dr
=
p
SRP
r

2D
(2)

dÑr

dr
+
Ñr − Ñθ

r
= 0 (3)

dÑθ

dr
− Ñr − Ñθ

r
+
Ed

2r

(dw

dr

)2
= 0 (4)

with the radial and tangential in-plane tensions Nr and Nθ and the initial in-plane

tension N0 at the edges. Further, using the Young’s modulus E, Poisson ratio ν and

flexural rigidity D of the membrane material

D =
Ed3

12(1− ν2)
(5)
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Figure 2. Circular reflective membrane under uniform vertical SRP load and initial

in-plane tension (left), and membrane cross-section with hinged-edge support and

deflected shape (right).

After being initially stretched by the load N0 (see figure 2), the membrane is then

subjected to the vertical SRP load due to pSRP. Therefore, the in-plane loads are

decomposed as follows

Nr = N0 + Ñr and Nθ = N0 + Ñθ (6)

where Ñr and Ñθ are incremental changes from N0 due to the SRP load. The system in

equations (2)-(4) can further be written in non-dimensional form as

θ̈ +
θ̇

ξ
− (k2 +

1

ξ2
)θ − 12(1− ν2)Srθ = 6(1− ν2)PSRPξ (7)

Ṡr +
Sr − Sθ

ξ
= 0 (8)

Ṡθ −
Sr − Sθ

ξ
= − 1

2ξ
θ2 (9)

where the following non-dimensional variables are used

ξ =
r

R
, (˙) =

d

dξ
, W =

w

d
(10)

θ =
dW

dξ
=
R

d

dw

dr
, Sr =

ÑrR
2

Ed3
(11)

and after introducing the initial tension parameter k and the loading parameter PSRP

k =

√
N0R2

D
and PSRP =

pSRPR
4

Ed4
(12)

Combining equations (8) and (9), the system can be recast as two coupled equations

in the variables θ and Sr, which finally obtains
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ξ2θ̈ + ξθ̇ − [1 + ξ2(k2 + 12(1− ν2)Sr)]θ = 6(1− ν2)PSRPξ
3 (13)

ξ2S̈r + 3ξṠr = − θ2

2
(14)

Within the scope of this paper, no initial in-plane tension is accounted for to maximize

the deflection, so the parameter k is zero. The corresponding boundary conditions (BC)

to solve the boundary value problem (BVP) for hinged edge support are then

θ = 0

Sr = 0

}
for ξ = 0 and

θ̈ = 0

Ṡr + (1− ν)Sr = 0

}
for ξ = 1 (15)

This type of support was chosen to represent the real conditions in the best way, since the

(approximately rigid) hoop structure inhibits membrane deflections in the u direction,

but allows for a non-zero slope dW/dξ at the edges.

In principle, the above BVP can be solved for any radial-symmetric load distribution

PSRP(ξ) [11]. Later, in section 4, variable load distributions will be used to change the

nominal deflection curves of membranes subjected to uniform pressure loads [14]. After

the BVP has been solved for θ (ξ), the relative membrane deflection is obtained through

W =
w

d
=

∫
θdξ (16)

The BVP is solved numerically with the MATLAB ’bvp4c’ routine, using the three-

stage Lobatto IIIa collocation method [15]. The implementation was validated using the

results observed in [14] for Silicon Nitride membranes with clamped-edge support under

uniform vertical load, showing that the deflections found and non-dimensional in-plane

tensions Sr(ξ) could be reproduced (results not included here). Furthermore, the chosen

approach was validated with a numerical finite-element analysis (FEM) conducted in

[16], using circular polyester Mylar films (density ρ = 1350 kg/m3, E = 3.5× 109 N/m2,

ν = 0.38 and dMylar = 1.0 × 10−6 m) of varying radius subjected to uniform vertical

light pressure at the Earth’s distance from the Sun (1 AU). Figure 3 shows the relative

out-of-plane deflections obtained when solving the coupled ODE system for uniform

SRP load for the same conditions. The central deflections are in the order of 0.2% of

the membrane radius and in good agreement with the results found in [16]. According

to the reference, the variation of SRP magnitude due to the local deflection of the film

was also taken into account. The film deflection changes the local light incidence angle,

cf. pitch angle α in equation (1), reducing the nominal SRP load. However, comparing

the results in figure 3 with [16] indicates that this effect is negligible, due to very small

angular deflections of the surface.

3. Nominal membrane deflection for constant reflectivity

As noted, the material likely to be employed for future space reflectors is Kapton,

due to its higher resistance to heat and radiation compared to Mylar. Accordingly,
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Figure 3. Reproduction of relative out-of-plane deflection for Mylar films (d = 1µm)

at Earth distance from the Sun (1 AU) for different membrane radii, found in [16].

the deflection properties of a Kapton membrane (d = 2.5 × 10−6 m, ρ = 1572 kg/m3,

E = 2.48 × 109 N/m2 and ν = 0.34 [17]) are investigated in the following. Figures 4

and 5 show the relative membrane deflections obtained for different membrane radii

R = 1, 5, 10, 25, 50 and 100 m and for solar distances RS = 0.5, 0.75, 1.0, 1.5, 2.5 and

3.0 AU, using a 100 m radius membrane. The dashed lines for each case indicate hypo-

thetical parabolic reference curves that are satisfying the same boundary conditions

and the same central deflection. As can be seen, the deflection surfaces obtained

are clearly not ideal paraboloids, as will be discussed below. The central deflections

increase for larger membrane sizes and smaller solar distances, as expected. In general,

all absolute deflections stay below 0.6 m, even for relatively large membranes (100 m

radius) and close to the Sun (0.5 AU). This already indicates large focal distances

when using the membrane as a solar power collector or antenna. The achievable focal

distances will be discussed in section 5. The maximum radial membrane stress is

found to be σmax = Nr,c/d = 7.595 × 104 N/m2 at the centre for a membrane radius

of R= 100 m at 0.5 AU. Compared to the ultimate tensile strength of Kapton, which

is σlim = 2.31 × 108 N/m2 (at 23◦ Celsius) and 1.39 × 108 N/m2 (at 200◦ Celsius), the

maximum stresses never exceed 0.05 % of the limit load case. This indicates that even

much thinner membranes could be employed for future space membrane reflectors.

Polynomial fits of different order are applied to the deflection curves to characterise

their shape, which is found to be of third order (cubic). This trend is shown in figure 6

for a 100 m radius membrane at 1 AU, together with a parabolic fit using a second-order

(parabolic) polynomial. Both polynomial fits are constrained to the central deflection
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Figure 4. Relative out-of-plane deflection for Kapton membrane (d = 2.5 µm) at

Earth distance from the Sun (1 AU) for different membrane radii (solid lines) and

hypothetic parabolic reference curves (dashed lines).
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Figure 5. Relative out-of-plane deflection for Kapton membrane (R = 100 m, d =

2.5 µm) at different solar distances (solid lines) and hypothetic parabolic reference

curves (dashed lines).
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Figure 6. Nominal deflection curve for uniform load using Kapton membrane

(R= 100 m, d= 2.5 µm) at 1 AU (black line), and second and third-order polynomial

fits, constrained to central deflection value w0/R.

value w0/R. The cubic fit (dotted blue line) is almost identical with the deflection curve

(solid black line). Although the parabolic fit (dashed red line) does not match the BC

at the edges exactly, it represents a better second-order fit than the parabolic reference

curves used in figures 4 and 5.

The deviation of the membrane deflection curve from the ideal parabolic shape

is most visible in the mid-region of the membrane. Here, the local gradient dw/dξ

is smaller than the gradient of the parabola and vice-versa close to the edges. This

indicates that the Kapton surface will not concentrate incoming light (or other forms of

electro-magnetic radiation) into a single focal point due to aberration. In particular, the

cubic surface reflects incoming light at the mid-part towards higher focal lengths and

vice-versa for light impinging close to the edges. In the following, it will be shown that

the cubic deflection can be corrected to a true parabolic one using uniformly distributed

reflectivity across the membrane surface.

4. Surface control using variable reflectivity distribution

In order to change the nominal (cubic) deflection shapes that were found for a uniform

light pressure load, the surface reflectivity distribution across the membrane needs to be

controlled. As seen in equation (1), a modulated SRP load is employed that incorporates

the reflectivity ρ(ξ) as a function of the position ξ along the surface, while the undeflected

membrane surface is assumed to be perpendicular to the Sun. Thus, when uniformly

distributing electro-chromic coating across the surface, the reflectivity function directly
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represents the SRP load distribution. Solving equation (1) for ρ(ξ) results in

ρ(ξ) =
pSRP(ξ)

p0

(
RS,0

RS

)−2

− 1 (17)

where an arbitrary load function pSRP(ξ) can be used, as long as the physical constraint

for ρ(ξ) ∈ [0, 1] is satisfied. This property is now used to control the membrane shape,

neglecting again the additional mass and thickness that would be introduced to the

membrane when distributing an electro-chromic coating layer on the surface, although

a static reflectivity distribution could also be engineered during the manufacture of the

membrane with no mass penalty.

Connecting pSRP(ξ) with the non-dimensional load parameter PSRP in equation (12)

such that

PSRP(ξ) =
pSRP(ξ)R4

Ed4
(18)

and substituting for the uniform load distribution PSRP within the coupled ODE system,

equation (13), introduces an arbitrary (radial symmetric) load function into the system

that can be solved as a BVP, with corresponding boundary conditions at the center and

at the edges.

4.1. Inverse problem approach for given membrane deflection shape

An inverse problem can now also be formulated, which is defined as calculating the

necessary reflectivity function ρ(ξ) to obtain a given membrane deflection shape W (ξ).

This can be, for example, a parabolic shape in order to use the membrane as a large

antenna, telescope or solar power satellite. A parabolic deflection curve, as used already

in figures 4 and 5, is of the general form

Wparab(ξ) = −Aξ2 +Bξ + C (19)

The coefficient A is the slope and C is the vertex of the parabola. The parameter

B is zero, thus WP (ξ) has no horizontal offset from the symmetry axis, which could

only be created through an asymmetric load. When inserting the ideal parabolic curve

into the coupled ODE system, it can be solved for PSRP(ξ) in order to obtain the load

distribution necessary to create this curve. Rearranging equation (13) for PSRP(ξ) and

equation (14) for the non-dimensional in-plane tension Sr(ξ) gives

PSRP(ξ) =
1

ν∗

[ ...
W

ξ
+

...
W

ξ2
− [1 + ξ2(k2 + 2ν∗Sr)]

Ẇ

ξ3

]
(20)

S̈r = −3

ξ
Ṡr −

1

2ξ2
(Ẇ )2 (21)

using the Poisson parameter ν∗ = 1 − ν2. Inserting the parabolic curve Wparab(ξ) for

W , the above equations now become

PSRP(ξ) = 4ASr (22)
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S̈r = −3

ξ
Ṡr − 2A2 (23)

Equation (23) can be solved in general for Sr, without specifying boundary conditions

Sr = −1

4
A2ξ2 − C1

2ξ2
+ C2 (24)

When again using the boundary conditions for hinged edge support, equation (15), the

above equation becomes

Sr = −1

4
A2ξ2 +

1

4

3−ν
1−ν

A2 (25)

Inserting into equation (22), the load distribution associated with a general parabolic

deflection curve can now be written as

PSRP(ξ) = −A3ξ2 +
3−ν
1−ν

A3 (26)

which shows that PSRP(ξ) is fully determined by the polynomial coefficient A and ν.

The inverse problem is now applied to create a parabolic deflection shape for a

100 m Kapton membrane of thickness 2.5 µm at the Earth’s distance from the Sun.

Figure 7 shows the nominal cubic deflection for constant reflectivity, thus a uniform

load distribution. A parabolic reference deflection curve (dotted black line) is taken as

input for the inverse problem. In order to match the central deflection of the nominal

cubic deflection curve (figure 4) and the zero-deflection boundary condition at the edge,

the coefficients are chosen to be A = C = W0,nom, where W0,nom represents the nominal

central deflection obtained for constant reflectivity. Accordingly, the parabolic reference

curve is now

WP (ξ) = −W0,nomξ
2 +W0,nom (27)

After inserting into equation (26), the light pressure distribution becomes

PSRP(ξ) = W 3
0,nom

(
3−ν
1−ν

− ξ2
)

(28)

After introducing this function into the coupled ODE system, it can be solved as a

regular BVP. As can be seen in figure 7, the resulting deflection curve (dashed red line)

exactly matches the input curve.

When reformulating equation (28), the absolute SRP load distribution can be

written as

pSRP(ξ) =
Ed4

R4
W 3

0,nom

(
3−ν
1−ν

− ξ2
)

(29)

However, this distribution does not necessarily match the condition not to exceed the

maximum possible pmax = 2p0(RS,0/RS)2 at a certain solar distance or, equivalently,

not to exceed the maximum reflectivity ρmax(ξ) = 1. As can be seen in figure 8, the

load distribution for the chosen parabolic deflection case exceeds pmax (dashed red line),
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Figure 7. Nominal deflection curve for uniform load using Kapton membrane

(R = 100 m, d = 2.5 µm) at 1 AU (black line), parabolic reference curve (dotted

line), deflection using distributed load function (dashed red line) and constrained load

function (green line).

showing that it is not possible to achieve the same nominal central deflection when

simply constraining the membrane to a parabolic shape. After introducing the additional

constraint pSRP(ξ) ≤ pmax into equation (29), the coefficients AC = CC = W0,C for the

constrained parabola can be calculated as

W0,C =

(
2p0R

4

Ed4
1−ν
3−ν

(
RS,0

RS

)2
) 1

3

(30)

In equation (30), the constrained central deflection W0,C is now fully determined by

the membrane material, size, thickness and solar distance. The resulting constrained

load distribution is also shown in figure 8 (green solid curve). The respective central

deflection is about 3% smaller compared to the unconstrained parabolic deflection curve.

The corresponding reflectivity distribution ρ(ξ), according to equation (17), is

finally found after inserting the SRP load distribution (equation (29))

ρ(ξ) =
Ed4

p0R4

(
RS

RS,0

)2

W 3
0,C

(
3−ν
1−ν

− ξ2
)
− 1 (31)

and further inserting the constraint for the central deflection W0,C

ρ(ξ) = 1− 2 (1−ν)

3−ν
ξ2 (32)

It can be seen that the reflectivity distribution in order to create a parabolic deflection

shape is independent of the membrane parameters and solar distance. The reflectivity
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Figure 8. Non-dimensional load distribution for unconstrained parabolic deflection

curve (dashed red line) and for constrained parabolic deflection (solid green line).
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Figure 9. Reflectivity distribution for unconstrained parabolic deflection curve

(dashed red line) and distribution for constrained parabolic deflection (solid green

line).

distribution is shown in figure 9, along with the constrained distribution that satisfies

ρ ≤ 1.

In summary, the necessary reflectivity distribution in order to create a parabolic

membrane deflection is independent of the radius, film thickness and solar distance. The

central membrane deflection can be calculated analytically for a given circular membrane



Shape Control of Flexible Space Reflectors 14

of radius R and film thickness d, perpendicular to the Sun at a solar distance RS.

5. General performance of parabolic sail reflector

A large reflective parabolic surface deployed in space has many potential applications,

such as communication, sensing and power collection. In order to evaluate the

performance of the deflected shapes that can be generated, some properties of parabolic

membrane reflectors will be assessed in the following.

A paraboloid concentrates incoming electro-magnetic radiation into a single focal

point, depending on its geometrical precision and surface quality. The corresponding

focal length, thus the focal distance from the vertex of the parabola, can be calculated

after converting the expression obtained for the central deflection, equation (30), into

dimensional form as

w0,C =

(
2p0R

4

Ed

1−ν
3−ν

(
RS,0

RS

)2
) 1

3

(33)

When transforming the parabolic reference curve WP (ξ), equation (27), into dimensional

form

wP = W0,C d
( r
R

)2
+W0,C d =

W0,C d

R2
r2 +W0,C d = ar2 + c (34)

where a = w0,C/R
2 and c = w0,C, the focal length can now be expressed as

f =
1

4a
=

R2

4w0,C

(35)

The achievable focal lengths for the deflected Kapton membranes used in section 3

are shown in figure 10, as function of radius and solar distance. For example, a

deflected membrane of 100 m radius at the Earth’s distance from the Sun has a focal

length fKapton = 7.54 km. However, when employing Mylar films with a currently

achievable thickness of only 0.9µm [18], the focal length could be further reduced to

fMylar = 6.11 km, since the focal length scales with d1/3 for the membrane thickness,

according to equations (33) and (35).

In general, the focal length of a space-based optical device shall be as small as

possible in order to operate a receiver/transmitter unit in the focus. This could be

achieved either by physically connecting the unit with the space reflector via a long

tether, or more likely through positioning a detached platform at the focus, which

is flying in formation with the reflector. Such formation-flying is a well established

technology [19]. As can be seen in figure 11, the trend of the central deflection w0,C scales

with R1/3 for the membrane radius and with 1/R
2/3
S for the solar distance. The first trend

means that increasing the membrane radius in order to achieve higher deflections (and

thus smaller focal lengths) is not necessarily beneficial, since the resulting membrane

deflections are growing slower than the membrane size. Accordingly, a very large

membrane diameter in the order of a few kilometres may not outweigh the potentially
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Figure 10. Achievable focal length of parabolic space reflector as function of radius

and solar distance.

high costs. The second trend shows that the deflection decreases slower than 1/R2
S with

solar distance (i.e. the rate at which the flux density of solar photons and thus usable

electric power scale), indicating that moderate focal lengths are still available at far

distances from the Sun.

6. Conclusions

It was shown that the deflection shape of a space-based circular membrane reflector

exposed to vertical solar radiation pressure loads can be controlled by changing the

reflectivity distribution across the surface, through the use of thin-film electro-chromic

coatings or by engineering the film optical properties during manufacture with no mass

penalty. At first, the nominal membrane deflection due to uniform light pressure

distribution was calculated for various membrane radii and solar distances. The results

showed a cubic polynomial deflection curve, which indicates that the deflected surface

does not naturally concentrate incoming light (or other forms of electro-magnetic

radiation) into a single focal point due to non-parabolic aberration. However, an

analytical expression for the reflectivity function across the surface was derived, enabling

a true parabolic deflection shape for space applications such as large antennae, telescopes

and solar power collection. This radially symmetric reflectivity function does not depend

on membrane size, thickness or solar distance. The latter will enable a parabolic profile

at any solar distance and thus to potentially prefabricate a fixed reflectivity distribution
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on the membrane surface, instead of using electro-chromic coatings. Although the

absolute deflection and thus focal length is changing with solar distance, this can be

compensated for by a detached receiver/transmitter platform that is formation-flying at

the current focus. All absolute membrane deflections for a 2.5µm polyimide Kapton film

were found to be smaller than 0.6 m, even for relatively large membranes (100 m radius)

and close to the Sun (half the Sun-Earth distance). The focal length of the resulting

parabolic reflectors were calculated, resulting for example in 7.54 km for a 100 m radius

membrane at the Earth’s distance from the Sun. Finally, when employing Mylar films

with a currently achievable thickness of only 0.9µm, the focal length could be further

reduced to 6.11 km, since the deflection increases for smaller membrane thickness.
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