537 research outputs found

    Coupled Replicator Equations for the Dynamics of Learning in Multiagent Systems

    Full text link
    Starting with a group of reinforcement-learning agents we derive coupled replicator equations that describe the dynamics of collective learning in multiagent systems. We show that, although agents model their environment in a self-interested way without sharing knowledge, a game dynamics emerges naturally through environment-mediated interactions. An application to rock-scissors-paper game interactions shows that the collective learning dynamics exhibits a diversity of competitive and cooperative behaviors. These include quasiperiodicity, stable limit cycles, intermittency, and deterministic chaos--behaviors that should be expected in heterogeneous multiagent systems described by the general replicator equations we derive.Comment: 4 pages, 3 figures, http://www.santafe.edu/projects/CompMech/papers/credlmas.html; updated references, corrected typos, changed conten

    The effects of changes in the order of verbal labels and numerical values on children's scores on attitude and rating scales

    Get PDF
    Research with adults has shown that variations in verbal labels and numerical scale values on rating scales can affect the responses given. However, few studies have been conducted with children. The study aimed to examine potential differences in children’s responses to Likert-type rating scales according to their anchor points and scale direction, and to see whether or not such differences were stable over time. 130 British children, aged 9 to 11, completed six sets of Likert-type rating scales, presented in four different ways varying the position of positive labels and numerical values. The results showed, both initially and 8-12 weeks later, that presenting a positive label or a high score on the left of a scale led to significantly higher mean scores than did the other variations. These findings indicate that different arrangements of rating scales can produce different results which has clear implications for the administration of scales with children

    Continuous Strategy Replicator Dynamics for Multi--Agent Learning

    Full text link
    The problem of multi-agent learning and adaptation has attracted a great deal of attention in recent years. It has been suggested that the dynamics of multi agent learning can be studied using replicator equations from population biology. Most existing studies so far have been limited to discrete strategy spaces with a small number of available actions. In many cases, however, the choices available to agents are better characterized by continuous spectra. This paper suggests a generalization of the replicator framework that allows to study the adaptive dynamics of Q-learning agents with continuous strategy spaces. Instead of probability vectors, agents strategies are now characterized by probability measures over continuous variables. As a result, the ordinary differential equations for the discrete case are replaced by a system of coupled integral--differential replicator equations that describe the mutual evolution of individual agent strategies. We derive a set of functional equations describing the steady state of the replicator dynamics, examine their solutions for several two-player games, and confirm our analytical results using simulations.Comment: 12 pages, 15 figures, accepted for publication in JAAMA

    Multi-Dimensional, Compressible Viscous Flow on a Moving Voronoi Mesh

    Full text link
    Numerous formulations of finite volume schemes for the Euler and Navier-Stokes equations exist, but in the majority of cases they have been developed for structured and stationary meshes. In many applications, more flexible mesh geometries that can dynamically adjust to the problem at hand and move with the flow in a (quasi) Lagrangian fashion would, however, be highly desirable, as this can allow a significant reduction of advection errors and an accurate realization of curved and moving boundary conditions. Here we describe a novel formulation of viscous continuum hydrodynamics that solves the equations of motion on a Voronoi mesh created by a set of mesh-generating points. The points can move in an arbitrary manner, but the most natural motion is that given by the fluid velocity itself, such that the mesh dynamically adjusts to the flow. Owing to the mathematical properties of the Voronoi tessellation, pathological mesh-twisting effects are avoided. Our implementation considers the full Navier-Stokes equations and has been realized in the AREPO code both in 2D and 3D. We propose a new approach to compute accurate viscous fluxes for a dynamic Voronoi mesh, and use this to formulate a finite volume solver of the Navier-Stokes equations. Through a number of test problems, including circular Couette flow and flow past a cylindrical obstacle, we show that our new scheme combines good accuracy with geometric flexibility, and hence promises to be competitive with other highly refined Eulerian methods. This will in particular allow astrophysical applications of the AREPO code where physical viscosity is important, such as in the hot plasma in galaxy clusters, or for viscous accretion disk models.Comment: 26 pages, 21 figures. Submitted to MNRA
    • …
    corecore