54 research outputs found

    Preclinical Evaluation of the Novel, Orally Bioavailable Selective Inhibitor of Nuclear Export (SINE) KPT-335 in Spontaneous Canine Cancer: Results of a Phase I Study

    Get PDF
    The purpose of this study was to evaluate the activity of Selective Inhibitors of Nuclear Export (SINE) compounds that inhibit the function of the nuclear export protein Exportin 1 (XPO1/CRM1) against canine tumor cell lines and perform a Phase I clinical trial of KPT-335 in dogs with spontaneous cancer to provide a preliminary assessment of biologic activity and tolerability.Canine tumor cell lines derived from non-Hodgkin lymphoma (NHL), mast cell tumor, melanoma and osteosarcoma exhibited growth inhibition and apoptosis in response to nanomolar concentrations of SINE compounds; NHL cells were particularly sensitive with IC50 concentrations ranging from 2-42 nM. A Phase I clinical trial of KPT-335 was performed in 17 dogs with NHL (naive or relapsed), mast cell tumor or osteosarcoma. The maximum tolerated dose was 1.75 mg/kg given orally twice/week (Monday/Thursday) although biologic activity was observed at 1 mg/kg. Clinical benefit (CB) including partial response to therapy (PR, n = 2) and stable disease (SD, n = 7) was observed in 9/14 dogs with NHL with a median time to progression (TTP) for responders of 66 days (range 35-256 days). A dose expansion study was performed in 6 dogs with NHL given 1.5 mg/kg KPT-335 Monday/Wednesday/Friday; CB was observed in 4/6 dogs with a median TTP for responders of 83 days (range 35-354 days). Toxicities were primarily gastrointestinal consisting of anorexia, weight loss, vomiting and diarrhea and were manageable with supportive care, dose modulation and administration of low dose prednisone; hepatotoxicity, anorexia and weight loss were the dose limiting toxicities.This study provides evidence that the novel orally bioavailable XPO1 inhibitor KPT-335 is safe and exhibits activity in a relevant, spontaneous large animal model of cancer. Data from this study provides critical new information that lays the groundwork for evaluation of SINE compounds in human cancer

    Molecular Mechanisms Generating and Stabilizing Terminal 22q13 Deletions in 44 Subjects with Phelan/McDermid Syndrome

    Get PDF
    In this study, we used deletions at 22q13, which represent a substantial source of human pathology (Phelan/McDermid syndrome), as a model for investigating the molecular mechanisms of terminal deletions that are currently poorly understood. We characterized at the molecular level the genomic rearrangement in 44 unrelated patients with 22q13 monosomy resulting from simple terminal deletions (72%), ring chromosomes (14%), and unbalanced translocations (7%). We also discovered interstitial deletions between 17–74 kb in 9% of the patients. Haploinsufficiency of the SHANK3 gene, confirmed in all rearrangements, is very likely the cause of the major neurological features associated with PMS. SHANK3 mutations can also result in language and/or social interaction disabilities. We determined the breakpoint junctions in 29 cases, providing a realistic snapshot of the variety of mechanisms driving non-recurrent deletion and repair at chromosome ends. De novo telomere synthesis and telomere capture are used to repair terminal deletions; non-homologous end-joining or microhomology-mediated break-induced replication is probably involved in ring 22 formation and translocations; non-homologous end-joining and fork stalling and template switching prevail in cases with interstitial 22q13.3. For the first time, we also demonstrated that distinct stabilizing events of the same terminal deletion can occur in different early embryonic cells, proving that terminal deletions can be repaired by multistep healing events and supporting the recent hypothesis that rare pathogenic germline rearrangements may have mitotic origin. Finally, the progressive clinical deterioration observed throughout the longitudinal medical history of three subjects over forty years supports the hypothesis of a role for SHANK3 haploinsufficiency in neurological deterioration, in addition to its involvement in the neurobehavioral phenotype of PMS

    The wide world of technological telerehabilitation for pediatric neurologic and neurodevelopmental disorders – a systematic review

    Get PDF
    IntroductionThe use of Information and Communication Technology (ICT) for assessing and treating cognitive and motor disorders is promoting home-based telerehabilitation. This approach involves ongoing monitoring within a motivating context to help patients generalize their skills. It can also reduce healthcare costs and geographic barriers by minimizing hospitalization. This systematic review focuses on investigating key aspects of telerehabilitation protocols for children with neurodevelopmental or neurological disorders, including technology used, outcomes, caregiver involvement, and dosage, to guide clinical practice and future research.MethodThis systematic review adhered to PRISMA guidelines and was registered in PROSPERO. The PICO framework was followed to define the search strategy for technology-based telerehabilitation interventions targeting the pediatric population (aged 0–18) with neurological or neurodevelopmental disorders. The search encompassed Medline/PubMed, EMBASE, and Web of Science databases. Independent reviewers were responsible for selecting relevant papers and extracting data, while data harmonization and analysis were conducted centrally.ResultsA heterogeneous and evolving situation emerged from our data. Our findings reported that most of the technologies adopted for telerehabilitation are commercial devices; however, research prototypes and clinical software were also employed with a high potential for personalization and treatment efficacy. The efficacy of these protocols on health or health-related domains was also explored by categorizing the outcome measures according to the International Classification of Functioning, Disability, and Health (ICF). Most studies targeted motor and neuropsychological functions, while only a minority of papers explored language or multi-domain protocols. Finally, although caregivers were rarely the direct target of intervention, their role was diffusely highlighted as a critical element of the home-based rehabilitation setting.DiscussionThis systematic review offers insights into the integration of technological devices into telerehabilitation programs for pediatric neurologic and neurodevelopmental disorders. It highlights factors contributing to the effectiveness of these interventions and suggests the need for further development, particularly in creating dynamic and multi-domain rehabilitation protocols. Additionally, it emphasizes the importance of promoting home-based and family-centered care, which could involve caregivers more actively in the treatment, potentially leading to improved clinical outcomes for children with neurological or neurodevelopmental conditions.Systematic review registrationPROSPERO (CRD42020210663)

    Clinical signs, treatment, and outcome in cats with myeloma-related disorder receiving systemic therapy

    No full text
    Myeloma-related disorder (MRD) is an uncommon disease in cats, for which there is no established standard of care. In this retrospective study, we evaluated presentation, response to treatment, and toxicity in cats with MRD receiving systemic treatment. Previously reported prognostic factors were evaluated for their impact on survival in cats receiving chemotherapy. Of fifteen cases identified, thirteen received melphalan or cyclophosphamide +/- corticosteroids as first-line therapy. Chlorambucil was commonly used as rescue therapy in cats with progressive disease, or in cases of chemotherapy-related toxicity with first line agents. Overall response rates were 71% and 83% for melphalan- and cyclophosphamide-treated cats, respectively. Discontinuation of melphalan due to toxicity was common. Survival times for cats initially treated with melphalan or cyclophosphamide were not significantly different (median 252 and 394 days, respectively), and no statistically significant prognostic factors were identified. This study suggests that the combination of cyclophosphamide and corticosteroids is well tolerated and may be considered as first-line therapy for cats with systemic MRD

    Transformation of human embryonic fibroblasts by BK virus, BK virus DNA and a subgenomic BK virus DNA fragment.

    No full text
    Human embryonic fibroblasts (HEF) have been transformed by BK virus (BKV) DNA and by u.v.-inactivated or live BKV alone or in association with methyl-cholanthrene (MTC). The transformed cells produced BKV large T and small t antigens as well as the cellular 53 kdal protein, detected by immunofluorescence and immunoprecipitation. After an initial phase of lysis and virus shedding, virus or its coat protein antigen could not be detected in transformed cells. All human transformed cell lines could be superinfected by BKV or BKV DNA, but their susceptibility to superinfection was 20- to 500-fold lower than normal HEF. BKV could be rescued by fusion of transformed cells with normal HEF or Vero cells and by transfection of normal HEF with total DNA and DNA extracted from the Hirt supernatant of transformed cells. Blot hybridization analysis of DNA from transformed cells showed a considerable amount of free BKV DNA in monomeric and polymeric forms. Integrated BKV DNA was absent in most cell lines but present in only small amounts in BKV-transformed cells treated with MTC. Analysis of free BKV DNA with various restriction endonucleases and by blot hybridization showed that monomeric forms were complete BKV genomes, whereas polymers contained both complete and defective or rearranged BKV DNA. Transformation of HEF was also obtained with a 3.7 kilobase (kb) fragment of the BKV genome, produced by sequential digestion of BKV with the restriction endonucleases HhaI and EcoRI. This fragment extends clockwise on the virus genome from 0 to 72.2 map units and contains the entire early region. Blot hybridization analysis of cells transformed by the HhaI/EcoRI 3.7 kb fragment showed two separate integrations of BKV sequences without free virus DNA

    Expanding the Natural History of <i>SNORD118</i>-Related Ribosomopathy: Hints from an Early-Diagnosed Patient with Leukoencephalopathy with Calcifications and Cysts and Overview of the Literature

    No full text
    Leukoencephalopathy with calcifications and cysts (LCC) is a rare autosomal recessive disorder showing a pediatric or adult onset. First described in 1996 by Labrune and colleagues, it was only in 2016 that bi-allelic variants in a non-protein coding gene, SNORD118, were found as the cause for LCC, differentiating this syndrome from coats plus (CP). SNORD118 transcribes for a small nucleolar RNA, which is necessary for correct ribosome biogenesis, hence the classification of LCC among ribosomopathies. The syndrome is characterized by a combination of white matter hyperintensities, calcifications, and cysts on brain MRI with varying neurological signs. Corticosteroids, surgery, and recently bevacizumab, have been tried with unclear results since the natural history of the disease remains elusive. To date, 67 patients with a pediatric onset of disease have been described in the literature, with a clinical-radiological follow-up carried out in only eleven of them. We described the clinical-radiological follow-up from birth to almost five years of age of a late-preterm patient diagnosed with LCC and carried out a thorough overview of pediatric patients described in the literature. It is important to gather serial clinical–radiological data from other patients to depict the natural history of this disease, aiming to deeply depict genotype-phenotype correlations and make the role of new therapeutics clearer

    A phase I clinical study to evaluate safety of orally administered, genetically engineered Salmonella enterica serovar Typhimurium for canine osteosarcoma

    No full text
    We conducted a prospective phase I study to evaluate safety of an orally administered Salmonella encoding IL-2 (SalpIL2) in combination with amputation and adjuvant doxorubicin for canine appendicular osteosarcoma. Efficacy was assessed as a secondary measure. The first dose of SalpIL2 was administered to 19 dogs on Day 0; amputation was done after 10 days with chemotherapy following 2 weeks later. SalpIL2 was administered concurrent with chemotherapy, for a total of five doses of doxorubicin and six doses of SalpIL2. There were six reportable events prior to chemotherapy, but none appeared due to SalpIL2. Dogs receiving SalpIL2 had significantly longer disease-free interval (DFI) than a comparison group of dogs treated with doxorubicin alone. Dogs treated using lower doses of SalpIL2 also had longer DFI than dogs treated using the highest SalpIL2 dose. The data indicate that SalpIL2 is safe and well tolerated, which supports additional testing to establish the potential for SalpIL2 as a novel form of adjuvant therapy for dogs with osteosarcoma

    Phase II study of the oral selective inhibitor of nuclear export (SINE) KPT-335 (verdinexor) in dogs with lymphoma

    No full text
    Abstract Background Chemotherapeutic options for the treatment of canine lymphoma have not changed in several decades necessitating the identification of new therapeutics to improve patient outcome. KPT-335 (verdinexor) is a novel orally bioavailable selective inhibitor of nuclear export (SINE) that exhibited anti-tumor activity against non-Hodgkin lymphoma in a prior phase I study. The objective of this phase II study was to expand upon the initial findings and assess the activity and safety in a larger population of dogs with lymphoma. Results Fifty-eight dogs with naïve or progressive B-cell and T-cell lymphoma were enrolled in this clinical trial. KPT-335 was administered orally in one of three dosing groups, based on the previously established biologically active dose of 1.5 mg/kg three times weekly. Treatment with single-agent, orally administered KPT-335 resulted in an objective response rate (ORR) of 37%, of which dogs with T-cell lymphoma had an ORR of 71%. KPT-335 was well tolerated in all dose groups with grade 1–2 anorexia being the most common adverse event. Anorexia was responsive to symptomatic and supportive medications, including prednisone. Conclusions These data demonstrate that KPT-335 has biologic activity in canine lymphoma, and support continued evaluation of SINE compounds such as KPT-335 in combination with standard chemotherapeutics in canine lymphoma

    A double blinded, placebo-controlled pilot study to examine reduction of CD34+/CD117+/CD133+ lymphoma progenitor cells and duration of remission induced by neoadjuvant valspodar in dogs with large B-cell lymphoma [version 3; referees: 2 approved]

    No full text
    We previously described a population of lymphoid progenitor cells (LPCs) in canine B-cell lymphoma defined by retention of the early progenitor markers CD34 and CD117 and “slow proliferation” molecular signatures that persist in the xenotransplantation setting. We examined whether valspodar, a selective inhibitor of the ATP binding cassette B1 transporter (ABCB1, a.k.a., p-glycoprotein/multidrug resistance protein-1) used in the neoadjuvant setting would sensitize LPCs to doxorubicin and extend the length of remission in dogs with therapy naïve large B-cell lymphoma. Twenty dogs were enrolled into a double-blinded, placebo controlled study where experimental and control groups received oral valspodar (7.5 mg/kg) or placebo, respectively, twice daily for five days followed by five treatments with doxorubicin 21 days apart with a reduction in the first dose to mitigate the potential side effects of ABCB1 inhibition. Lymph node and blood LPCs were quantified at diagnosis, on the fourth day of neoadjuvant period, and 1-week after the first chemotherapy dose. Valspodar therapy was well tolerated. There were no differences between groups in total LPCs in lymph nodes or peripheral blood, nor in event-free survival or overall survival. Overall, we conclude that valspodar can be administered safely in the neoadjuvant setting for canine B-cell lymphoma; however, its use to attenuate ABCB1+ cells does not alter the composition of lymph node or blood LPCs, and it does not appear to be sufficient to prolong doxorubicin-dependent remissions in this setting
    • …
    corecore