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Abstract

Background: The purpose of this study was to evaluate the activity of Selective Inhibitors of Nuclear Export (SINE)
compounds that inhibit the function of the nuclear export protein Exportin 1 (XPO1/CRM1) against canine tumor cell lines
and perform a Phase I clinical trial of KPT-335 in dogs with spontaneous cancer to provide a preliminary assessment of
biologic activity and tolerability.

Methods and Findings: Canine tumor cell lines derived from non-Hodgkin lymphoma (NHL), mast cell tumor, melanoma
and osteosarcoma exhibited growth inhibition and apoptosis in response to nanomolar concentrations of SINE compounds;
NHL cells were particularly sensitive with IC50 concentrations ranging from 2–42 nM. A Phase I clinical trial of KPT-335 was
performed in 17 dogs with NHL (naive or relapsed), mast cell tumor or osteosarcoma. The maximum tolerated dose was
1.75 mg/kg given orally twice/week (Monday/Thursday) although biologic activity was observed at 1 mg/kg. Clinical benefit
(CB) including partial response to therapy (PR, n = 2) and stable disease (SD, n = 7) was observed in 9/14 dogs with NHL with
a median time to progression (TTP) for responders of 66 days (range 35–256 days). A dose expansion study was performed
in 6 dogs with NHL given 1.5 mg/kg KPT-335 Monday/Wednesday/Friday; CB was observed in 4/6 dogs with a median TTP
for responders of 83 days (range 35–354 days). Toxicities were primarily gastrointestinal consisting of anorexia, weight loss,
vomiting and diarrhea and were manageable with supportive care, dose modulation and administration of low dose
prednisone; hepatotoxicity, anorexia and weight loss were the dose limiting toxicities.

Conclusions: This study provides evidence that the novel orally bioavailable XPO1 inhibitor KPT-335 is safe and exhibits
activity in a relevant, spontaneous large animal model of cancer. Data from this study provides critical new information that
lays the groundwork for evaluation of SINE compounds in human cancer.
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Introduction

The exchange of proteins between the nucleus and cytoplasm is

a tightly regulated process that involves several proteins respon-

sible for shuttling cargo in and out of the nucleus. There are seven

known nuclear export proteins (Exportin 1–7) that carry macro-

molecules from the nucleus to the cytoplasm [1,2,3]. Exportin 1

(XPO1, also called Chromosome Region Maintenance protein 1

[CRM1]) is a member of the karyopherin b family of transport

receptors that binds a very diverse set of approximately 220 target

proteins through a hydrophobic leucine-rich nuclear export signal

(NES) present in the cargo [4]. Interaction of the NES-directed

protein cargo with the small GTPase molecule Ran leads to

cytoplasmic transport via a nuclear pore complex [5]. XPO1 is the

sole nuclear exporter of several major tumor suppressor and

growth regulatory proteins (TSPs and GRPs, including p53, p75,

Rb, p21, p27, STAT3, FOXO and IkB among others) [6,7].

Expression of XPO1 is known to be upregulated in a variety of

both hematologic malignancies and solid tumors and this

correlates with a poor prognosis [1,2,3], indicating that changes

in nuclear-cytoplasmic trafficking resulting in aberrant localization

of key proteins can contribute to tumorigenesis and potentially

resistance to therapy.
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Several small molecule inhibitors of XPO1 have been developed

and tested against a variety of neoplastic cells, primarily in vitro.

These include Leptomycin B, ratjadone, anguinomycin, goniotha-

lamin, among others, that bind covalently to a reactive cysteine

residue (Cys528) located in the NES-binding groove of XPO1

[1,2,3]. This binding functionally inactivates XPO1 in an

irreversible manner and targets the protein for proteasome

degradation [8], resulting in restoration of TSP and GRP cellular

localization and function. For example, Leptomycin B causes

nuclear retention of the BCR-ABL1 fusion protein and induces

apoptosis when co-administered with imatinib to CML cells in vitro

[9]. While Leptomycin B exhibits activity against several cancer

cell lines in vitro and mouse xenograft tumor models, it induces

significant systemic toxicity in both animals and humans resulting

in discontinuation of clinical development [10]. More recently,

analogs of Leptomycin B have been developed that demonstrate

greater potency in vitro and in vivo with a significantly reduced

toxicity profile in mice [11]. However, these agents require

intravenous delivery, limiting the frequency of drug administra-

tion.

Recently, novel, drug-like, orally bioavailable, small-molecule

Selective Inhibitor of Nuclear Export (SINE) compounds that

specifically and irreversibly bind to XPO1 at the reactive site Cys

528 residue have been developed [12,13,14,15,16,17,18]. These

are slowly reversible with a t1/2 of approximately 24 hours, and

lead to functional inactivation the XPO1 protein. SINE

compounds have been shown to induce apoptosis and block

proliferation in several cancer cell lines, including those derived

from colon [6], pancreas [12], and breast carcinomas [16] as well

as chronic lymphocytic leukemia (CLL) [15], while sparing normal

cells [19]. Additional studies have shown potent anti cancer

activity and good tolerability of SINE in vivo using mouse human

xenograft (subcutaneous, orthotopic, or leukemograft) models of

pancreatic cancer [12], renal cancer [20], CLL [15], mantle cell

lymphoma (MCL) [18], multiple myeloma [8] and acute

myelogenous leukemia (AML) [17]. These data support the notion

that SINE compounds will have biologic activity in humans with

cancer.

Spontaneous canine cancers exhibit many clinical and molec-

ular similarities to human cancers and as such, serve as an

attractive model for preclinical studies that evaluate the biologic

activity and toxicities of novel anti-cancer therapeutics. Such

studies have been used to validate the activity of multi-targeted

receptor tyrosine kinase inhibitors (toceranib) [21,22], new

chemotherapeutic agents (GS-9219) [23], and various other small

molecule inhibitors (ibrutinib, STA-1474) [24,25]. Therefore, the

purpose of this work was to examine the effects of SINE

compounds in canine spontaneous cancers. Specifically, their

activity was first assessed in vitro against canine tumor cell lines

with a specific emphasis on hematopoietic tumors, after which a

Phase I study of the novel SINE KPT-335 was performed in dogs

with metastatic osteosarcoma, mast cell tumor and non-Hodgkin

lymphoma (NHL). These studies laid the groundwork for the

current Phase I evaluation of the SINE compound KPT-330 in

humans with cancer and for a potentially pivotal study of KPT-

335 for dogs with newly diagnosed or relapsed NHL.

Materials and Methods

Primary Tumor Samples and Cell Culture
Cryopreserved tumor cells obtained from sterile lymph node

biopsy samples from dogs with diffuse large B cell lymphoma

(DLBCL) were cultured with 100 ng/mL of megaCD40L (Enzo

Life Science, Plymouth Meeting, PA) as previously described

[26,27]. The human T-cell leukemia cell line, Jurkat, was from the

American Type Culture Collection (ATCC, Manassas, VA) and

cultured in RPMI1640 medium (Gibco/BRL, Grand Island, NY)

containing 10% fetal bovine serum (FBS; Atlas Biologicals, Fort

Collins, CO), 2-mercaptoethanol (Gibco/BRL), HEPES, L-

glutamine, sodium pyruvate (Mediatech Inc., Manassas, VA),

non-essential amino acids (Sigma Aldrich, St. Louis, MO), and

Primocin (Invivogen, San Diego, CA). The canine DLBCL cell

line CLBL1 obtained from Dr. Barbara Rütgen (University of

Vienna, Austria) [28,29] and human DLBCL cell lines OCI-Ly3

[30,31] and OCI-Ly10 [32] obtained from Dr. Anne Novak

(Mayo Clinic Cancer Center, Rochester, MN) were cultured in

complete Iscove’s Modified Dulbecco’s medium (IMDM) contain-

ing 20% FBS, L-glutamine, and Primocin. All cells were

maintained at 37uC in a humidified 5% CO2 atmosphere. The

following additional canine tumor cell lines were used to evaluate

response to SINE compounds: C2, mast cell tumor line provided

by Dr. George Caughey, UCSF, San Francisco, CA [33]; OSA16,

osteosarcoma cell line, provided by Dr. Jaime Modiano, UM,

Minneapolis, MN [34]; and 323610-3, malignant melanoma cell

line, provided by Dr. Michael Kent, UCD, Davis, CA [35]. All cell

lines were cultured in complete RPMI media containing 10%

FBS, antibiotic/antimycotic, HEPES, sodium pyruvate, nonessen-

tial amino acids and Glutamax (media supplements from Gibco).

Viability and Proliferation Assays
Cell viability for lymphoid lines was determined by the MTS (3-

(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfo-

phenyl)-2H-tetrazolium) assay using CellTiter 96H AQueous One

Solution Cell Proliferation Assay Kit (Promega, Madison, WI).

Briefly, for lymphoid cell lines, 56104 cells (or 16105 primary

DLBCL cells) were cultured in 100 mL of complete medium in 96-

well plates in the presence of SINE compounds. After 72 hours,

20 mL of MTS solution was added to each well and cells were

incubated for another 4 hours before measuring absorbance at

490 nm using a Wallac Victor 1420 Multilabel Counter (Perkin

Elmer, Waltham, MA). The IC50 of SINE was calculated using

Prism 6 software (GraphPad Software, Inc., La Jolla, CA).

For the non-lymphoid cell lines, 96 well plates were seeded in

triplicate in 90 mL with 2500 cells/well of OSA16, 5000 cells/well

of C2, and 2500 cells/well of 323610-3. Seeded plates were

cultured overnight then treated the following day with 10 mL of

KPT-214 in C10 media at concentrations of 0.0001, 0.01, 0.1, 1.0,

and 10 mM. Plates were collected at 92 hours, centrifuged at

1300 rpm, and supernatant was removed by inverting plates on

absorbent paper. Plates were then sealed and immediately placed

at 280uC for a minimum of 12 hours. Plates were then thawed

and CyQUANT HCell Proliferation Assay (Life Technologies) was

performed following the manufacturer’s protocol. Briefly, 200 mL
of the diluted working CyQUANT solution was added to each well

and protected from light. Fluorescence was the measured using a

SpectraMax M2 microplate reader at 480 nm excitation and

520 nm emission. Results were represented as percent of control,

or plotted to calculate IC50 values at 92 hours.

Apoptosis Assay
Jurkat cells and primary canine DLBCL cells were cultured for

24 hours in the presence of 100 nM KPT-335 or dimethyl

sulfoxide (DMSO). Cells were stained with Annexin V (eBios-

ciences, San Diego, CA) according to the manufacturer’s

instruction. Flow cytometry was performed using a BD LSRII

flow cytometer (BD Immunocytometry Systems, San Jose, CA)

and results were analyzed using FlowJo software (Tree Star,

Ashland, OR).
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Immunoblotting
Cryopreserved primary canine DLBCL and CLBL1 cells were

lysed in RIPA buffer containing 150 mM NaCl, 50 mM Tris,

pH 7.4, 0.1% sodium dodecyl sulfate (SDS), 1.0% Triton X-100,

1.0% sodium deoxycholate, 5 mM EDTA, 1 mM dithiothreitol,

and a Proteinase Inhibitor Cocktail (Sigma-Aldrich, St. Louis,

MO). Insoluble material was removed by centrifugation, and

protein concentrations of the cell lysates were determined using

the BioRad Protein Assay kit (BioRad, Hercules, CA). Proteins

(100 mg) were separated by SDS-polyacrylamide gel electropho-

resis (SDS-PAGE) and transferred to nitrocellulose membranes

(BioRad, Hercules, CA). Antibody staining was performed using

the SNAP i.d. system (EMDMillipore, Billerica, MA) according to

the manufacturer’s instructions. Briefly, membrane was blocked by

50% LI-COR blocking buffer (LI-COR, Lincoln, NE) and stained

with rabbit anti-XPO1 antibody (1:66 dilution, Santa Cruz, Santa

Cruz, CA) and mouse anti-actin antibody (1:1666 dilution, Sigma-

Aldrich), followed by secondary donkey anti-rabbit antibody

conjugated to IRDye800 and anti-mouse antibody conjugated to

IRDye680 (1:3,333 dilution, LI-COR). Detection was performed

using the Odyssey Infrared Imaging System (LI-COR).

KPT-335 Formulation
KPT-335 was prepared as gelatin filled capsules in strengths

ranging from 2.5 mg to 20 mg of active pharmaceutical ingredient

(API). The API was wet milled with Lutrol F68 NF (BASF) and

water in a Microfluidics micro-fluidizer, combined with Plasdone

K29/30 (ISP Technologies), and lyophilized. Lyophilized powders

contained 70–75% API. Capsules were individually hand filled

with lyophilized powder to the desired dosage strength. All

excipients were of suitable grades for use in pharmaceuticals.

Pharmacokinetic Analysis in Healthy Dogs
KPT-335 was administered as a single oral dose in capsule

formulation to 6 male beagle dogs at approximately 1.5 mg/kg

following a meal. Serial blood samples were collected from each

dog prior to dosing and at 0.25, 0.5, 1, 2, 4, 6, 8, 12, 18, 24 and 48

hours post-dose and placed into tubes containing K2EDTA. Blood

samples were stored on wet ice until processed to plasma by

centrifugation at 3500 rpm for 10 minutes at 5uC. Plasma samples

were stored in at 280uC until analysis at Agilux Laboratories

(Worcester, MA). Plasma samples were analyzed for parent drug

concentration using sample preparation by protein precipitation

and then analysis by LC-MS/MS using propranolol as the internal

standard. The method was qualified for use (a single batch to

assess method performance: precision and accuracy; linearity of

dilution; and matrix specificity) prior to initiation of sample

analysis. Acceptance criteria for calibration standards and quality

control samples were within 630% nominal concentration.

Individual animal pharmacokinetic parameter values were derived

by the pharmacokinetic analysis program Phoenix WinNonlin

version 6.3 (Pharsight Corporation), using the non-compartmental

Model 200 with uniform weighting. The single-dose pharmaco-

kinetic parameters assessed include: Cmax (maximum concentra-

tion observed); Tmax (time of observed maximum concentration);

AUC0R‘ (area under the concentration-time curve from time zero

extrapolated to infinity); AUC0Rlast (area under the concentration-

time curve from time zero to the time of the last quantifiable

concentration); and t1/2 (terminal half life). Descriptive statistical

data (mean, standard deviation, and standard error of the mean)

were calculated from the unrounded numbers in an Excel

(Microsoft) spreadsheet. Concentration results, means, and calcu-

lated parameters were reported to 3 significant figures.

Clinical Trial Eligibility
This clinical trial was approved by the Ohio State University

(OSU) Veterinary Medical Center (VMC) Clinical Research

Advisory Committee and the OSU IACUC; IACUC approval was

also obtained at University of Minnesota and Texas A&M

University. Written informed consent from the owner of each

dog was obtained prior to study entry. KPT-335 was administered

to dogs with metastatic osteosarcoma, mast cell tumor or NHL

that had failed conventional therapy or for which there were no

therapeutic alternatives, or for which conventional therapy was

not desired by the owner. To be eligible for the study, each dog

must have been definitely diagnosed via cytology or histopathology

and had met all of the inclusion criteria and none of the exclusion

criteria. Additional eligibility criteria included: .1 year old at

study entry; adequate organ function; at least 2 weeks since prior

chemotherapy or radiation with complete recovery from the acute

toxicities of these treatments (3 weeks for a surgical procedure); at

least 1 week since prior treatment with any other investigational

drug; and no evidence of brain metastases or any serious systemic

disorder incompatible with the study at the discretion of the

investigator.

Study Design
This study was a Phase I dose escalating, open label assessment

of the safety and biologic activity of KPT-335 in client owned dogs

with spontaneous malignancies. Assessment of clinical toxicities

and tumor response was performed at each visit. Dogs were

evaluated for hematologic and biochemical toxicities every 7 days

with routine bloodwork. The initial dose of 1 mg/kg orally twice

per week (Monday/Thursday or Tuesday/Friday) was based on

previous data from normal laboratory dogs (data not shown) and

dose escalation was set at 0.25 mg/kg increments in cohorts of 3

until dose limiting toxicity (DLT) was identified. The DLT was

considered to be any grade 3 or 4 hematologic or non-hematologic

toxicity based on the established VCOG-CTCAE criteria [36].

Additionally, any chronic non-grade 3 or 4 toxicities considered to

significantly impair quality of life (i.e., lethargy, inappetence) were

qualified as DLTs. Disease progression or signs and symptoms

definitely related to disease were not considered adverse events

(AEs). The maximum tolerated dose (MTD) was considered to be

one dose below that at which DLT occurred.

Toxicity Assessment
Each patient underwent a baseline complete history, physical

examination, and pre-dose laboratory assessment that included a

complete blood count (CBC), serum biochemistry profile, coagu-

lation parameters (PT/PTT) and urinalysis. Patients were assessed

for adverse events on days 7, 14, 21, and 28, and every 2 weeks

thereafter at which time all laboratory assessments were repeated.

Stipulations regarding minimal hematological requirements to

continue dosing were included in the protocol: hematocrit .25%,

neutrophils .1500/L, platelets .100,000/L. In addition, liver

transaminases were required to be ,4X upper limit of normal

with a normal total bilirubin and serum creatinine to continue

KPT-335 therapy.

Concomitant Medications
To treat drug-related gastrointestinal toxicities, supportive care

was administered as needed to dogs enrolled in this study. This

typically consisted of famotidine, omeprazole, metronidazole,

loperamide, metoclopramide, ondansetron, and/or maropitant.

Antihistamines were administered to dogs with mast cell tumors,

as these tumors are known to release histamine. Other supportive

SINE KPT-335 in Spontaneous Canine Cancer
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care administered to dogs consisted of prednisone and non-

steroidal anti-inflammatory medications to treat tumor-associated

inflammation, inappetence, and for pain control.

Tumor Response Assessment
Tumor assessments were completed prior to study entry, and

days 7, 14, 21, and 28. For dogs that continued beyond 4 weeks,

response assessments were performed every 2 weeks thereafter, or

at the time of suspected tumor progression. Responses were

assessed by the investigator according to pre-defined protocol

criteria. The response in dogs with assessable disease was

performed by clinical examination, ultrasonography, or thoracic

radiography. Many lesions were not amenable for quantitative

radiographic imaging, but were followed either by serial clinical

examination (superficial lesions; palpable lymph nodes) or by

ultrasonography (abdominal lymph nodes). Thoracic lesions were

assessed by thoracic radiography.

The response in dogs with measurable disease was judged by the

investigator on the basis of Response Evaluation Criteria for

Peripheral Nodal Lymphoma in dogs (v1.0) [37]. A complete

response (CR) was defined as disappearance of all disease on two

measurements separated by a minimum period of 3 weeks. A

partial response (PR) was defined as greater than 30% reduction in

the sum of the longest diameter of the target lesions documented

by two assessments separated by at least 3 weeks. An increase of

.20% in the size of all measurable tumor areas as measured by

the sum of longest diameters of the target lesions taken as reference

the smallest sum since initiation of therapy, or the appearance of

any new lesion(s) would qualify as progressive disease (PD). Stable

disease (SD) was defined by the absence of criteria for either a

response or progression; to be considered SD, dogs must have

demonstrated no evidence of PD at the 28 day assessment. Dogs

who had no evidence of tumor progression and who had not

experienced any unacceptable toxicity were eligible for extended

treatment cycles. Dose escalation from twice per week adminis-

tration to three times per week administration in an individual dog

was permitted if the dog was tolerating therapy.

Quality of Life Assessment
A tool to assess quality of life in dogs with cancer during

treatment has been previously published [38]. This was used to

assess owner perceived changes in dogs undergoing KPT-335

treatment during both the dose escalation and dose expansion

studies. An overall quality of life (QOL) score was created based on

answers to the questions on the quality of life questionnaire. The

scores from each question were summed resulting in an overall

quality of life score which could range from 23 to 115. Trends in

Quality of Life (QOL) during the study were examined using

linear mixed models containing fixed effects of time and an

autoregressive correlation structure for the random errors. Wald

tests were used to test for a significant change in QOL with

degrees of freedom calculated using the Kenward-Roger method

[39]. Measurements obtained after 90 days were not included in

the analysis for the dose escalation study and measurements after

70 days were not included in the analysis of the dose expansion

data due to few data points after those time points.

Results

Activity of SINE Compounds against Canine Tumor Cells
in vitro
We first evaluated the effect of KPT-185, which is one of the

most potent SINE compounds but with limited oral bioavailability

and therefore only suitable for the in vitro studies, on Jurkat

(human T cell leukemia) cells and 6 primary canine DLBCL

samples (5 distinct tumors with one pair of the same tumor). KPT-

185 effectively inhibited the viability of Jurkat and canine DLBCL

cells (Figure 1A and Table 1). The IC50 of KPT-185 against Jurkat

(n = 3) and primary canine DLBCL samples (n = 6) were

8.760.7 nM and 13.366.2 nM, respectively. KPT185-trans

isomer (which has ,100 fold less XPO1 inhibition activity as

the cis-isomer), showed much less toxicity when it was tested using

Jurkat cells and one of primary canine DLBCL samples (IC50 were

.1000 nM in both tumor cells). Next, we evaluated the effect of

KPT-335, a clinical candidate compound with good oral exposure

used in this clinical trial, on canine and human DLBCL cells.

KPT-335 inhibited the viability of OCI-Ly3, OCI-Ly10, and

CLBL1 at the IC50 of 2.161.3 nM, 41.8621.0 nM, and

8.564.1 nM, respectively (Figure 1B and Table 1). We also

demonstrated KPT-335 induced apoptosis in CLBL1 cells and

primary canine DLBCL cells using flow cytometry. Treatment of

cells with KPT-335 for 24 hours increased apoptotic cells (Annexin

V+ cells) compared to mock treated cells (Figure 1C). Finally, we

confirmed the expression of XPO1, which was detected by the

estimated size of XPO1 (,123 kDa), in dog cells using the CLBL1

cell line, human DLBCL cell lines, and canine primary DLBCL

cells (Figure 1D). Taken together, both human and canine

DLBCL express XPO1 and SINE compounds show potent

activity against these tumor cells, suggesting a potential therapeutic

benefit for human and canine patients with DLBCL.

To provide a preliminary assessment of the potential activity of

SINE XPO1 antagonists against additional canine cancers, the C2

mast cell tumor line, the OSA16 osteosarcoma cell line, and the

323610-3 melanoma cell line were utilized. For these studies an

earlier analog, KPT-214, was available for the in vitro experi-

ments (Figure 2). The IC50 of KPT-214 against the C2, OSA16

and 323610 were 490 nM, 89 nM, and 70 nM, respectively. In

summary, the SINE exhibit biologic activity in vitro against a wide

variety of canine tumor cell lines, with lymphoid lines being the

most sensitive in the very low nanomolar range. These data

supported the subsequent in vivo evaluation of SINE in dogs with

spontaneous cancers, with a particular emphasis on dogs NHL.

Pharmacokinetics of KPT-335 in Healthy Dogs
To assess the pharmacokinetics of KPT-335, six healthy beagle

dogs were administered a single dose of drug at 1.5 mg/kg after

being fed a meal. Blood samples were obtained over a 48 hour

time period and analyzed for plasma KPT-335 concentrations.

The results are shown in Table 2. The mean Tmax was

approximately 4 hours with a Cmax of approximately 250 ng/

ml, and an average AUC of 1800 ng/ml.

Dose Escalation Study
Patient demographics. Patient demographics and tumor

types are listed in Table 3. A total of 17 dogs were enrolled into the

dose escalation portion of the study. The median age was 7.5 years

and the median weight was 35 kg. The majority of dogs enrolled

had NHL (n= 14), and most (n = 12) had also received prior

therapy including surgery, chemotherapy and/or prednisone.

Prednisone was administered to 10 dogs during the course of

KPT-335 treatment at 0.5 mg/kg either once per day or every

other day; in 8/10 cases, the dogs entered the study after having

experienced disease progression in the face of prednisone therapy

and consequently, the drug was not discontinued. The remaining

two dogs were placed on prednisone after the first 28 days of

treatment to address inappetence/anorexia associated with

treatment. These dogs received prednisone at 0.5 mg/kg every

other day for the duration of treatment with KPT-335.

SINE KPT-335 in Spontaneous Canine Cancer
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Clinical toxicities and maximum tolerated dose. For all

dogs enrolled in the dose escalation portion of the study, the

primary clinical toxicities consisted of mainly grade 1 and 2

gastrointestinal events including anorexia, vomiting and diarrhea,

as well as lethargy (summarized in Tables 4 and 5). The MTD was

established as 1.75 mg/kg given twice per week (Monday/

Thursday). All three dogs in the 2 mg/kg cohort experienced

DLT including grade 3 anorexia (n = 2), grade 3 vomiting (n = 1),

grade 3 diarrhea (n= 1), grade 3 ALT elevation (n = 2), grade 3

AST elevation (n= 1), and grade 3 ALP elevation (n= 1).

Therefore, the adverse event profile of KPT-335 was mainly

limited to the gastrointestinal tract and clinically relevant

hepatotoxicity was observed mainly at doses above the MTD.

In 4 cases, dogs that were on drug for over 4 weeks had a

change in regimen from twice per week to three times per week

(Monday/Wednesday/Friday) as drug was well tolerated and the

dogs were experiencing stable disease. This occurred in one dog

receiving 1 mg/kg, two dogs receiving 1.25 mg/kg, and one dog

receiving 1.5 mg/kg. They remained on this increased dosing

frequency regimen for the duration of therapy (median 68.5 days)

without any increase in clinical toxicities. In 4 cases dose

modifications were made for dogs that experienced adverse

events. Two of these occurred in dogs that received drug at

2 mg/kg and experienced grade 3 adverse events; in both

instances, the dose was reduced to 1.5 mg/kg twice per week. In

the other two instances, one dog was reduced from 1.75 mg/kg to

1.5 mg/kg then 1.25 mg/kg due to continuing issues with

anorexia, and the other dog was reduced from 1.5 mg/kg to

Figure 1. Biologic activity of SINE compounds against canine NHL cells. (A) Jurkat cells and primary canine DLBCL cells (sample #1–5, #5
was independently tested twice) were cultured in 96-well plates for 72 hours with log serial dilutions of KPT-185 and the cell viability was analyzed
using the MTS assay. Each experiment was performed in duplicate wells and experiments were repeated three times (B) Human and canine DLBCL
cells were cultured in a 96-well plate for 72 hours with 3-fold serial dilutions (0–1000 nM) of KPT-335 and analyzed using the MTS assay. Each
experiment was performed in duplicate wells and experiments were repeated three times. (C) CLBL1 cells and primary canine DLBCL cells (sample
#1) were treated with 100 nM KPT-335 for 24 hours and analyzed for apoptosis using flow cytometry. Experiments were performed three times
independently and the average results are shown. (D) Expression of XPO1 in human and canine DLBCL cell lines. Protein lysates prepared from OCI-
Ly3, OCI-Ly10, and CLBL1 were separated by SDS-PAGE and subjected to immunoblotting for XPO1; b-actin served as the control.
doi:10.1371/journal.pone.0087585.g001

Table 1. IC50 (6 S.D.) of SINE for human and canine
lymphoma cells.

KPT-335 KPT-185 KPT-185 trans

Jurkat 0.3 8.760.7 .1000

OCI-Ly3 2.161.3 24.1 NP

OCI-Ly10 41.8621.0 246.2 NP

CLBL1 8.564.1 NP NP

Canine DLBCLs – 13.366.2 –

DLBCL#1 2.0 13.1 NP

DLBCL#2 NP 9.0 NP

DLBCL#3 NP 12.2 NP

DLBCL#4 NP 4.9 NP

DLBCL#5 NP 21.6 .1000

IC50, 50% inhibitory concentration; DLBCL, diffuse large B-cell lymphoma;
NP, not performed.
doi:10.1371/journal.pone.0087585.t001
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1.25 mg/kg, also due to anorexia. This last patient remained on

therapy for 246 days.

Response to therapy. The median TTP for all dogs was 35

days (range 14–246 days). A total of 7 dogs experienced PD in the

first 4 weeks of therapy. Two dogs had a PR for 71 and 246 days,

and 8 dogs experienced SD for a median of 58.5 days (range 28–

84 days). Of these 10 dogs, 6 were receiving prednisone prior to

starting KPT-335 that continued during treatment and 4 did not

Figure 2. Biologic activity of SINE compounds against canine tumor cell lines. Canine tumor cell lines C2 (mast cell), OSA16 (osteosarcoma)
and 323610-3 were cultured in 96 well plates in triplicate with serial dilutions of KPT-214 for 92 hours after which the plates were collected, media
removed, and the plates were frozen at 280uC. Analysis for effects on cell proliferation was then performed using the CyQUANT assay according to
the manufacturer’s specifications. Experiments were repeated three times; the IC50 for each cell line is shown.
doi:10.1371/journal.pone.0087585.g002

Table 2. Pharmacokinetics of KPT-335 in healthy dogs.

Parameter KPT-335 at 1.5 mg/kg

Dose (mg/kg)

Mean 1.46

SD 0.0542

SEM 0.0221

Cmax (ng/mL)

Mean 253

SD 88.3

SEM 36.1

Tmax (hr)

Mean 3.83

SD 2.71

SEM 1.11

t1/2 (hr)

Mean 3.88

SD 1.47

SEM 0.602

AUC0-‘ (h*ng/mL)

Mean 1810

SD 216

SEM 88.2

AUC0-last (h*ng/mL)

Mean 1760

SD 223

SEM 90.9

doi:10.1371/journal.pone.0087585.t002

Table 3. Subject demographics.

Characteristics Dose Escalation Dose Expansion

Number of dogs 17 6

Age (yrs)

Median 7.5 6.75

Mean 7.7 6.4

Range 4–11 4.5–8

Weight (kgs)

Median 32 23.95

Mean 31.5 20.83

Range 6.2–66.7 4.5–31.4

Gender

Male intact 1 0

Male neutered 8 3

Female intact 1 0

Female neutered 7 3

Tumor Type

Lymphoma 14 6

Mast cell tumor 2 N/A

Osteosarcoma 1 N/A

Prior Treatment

Yes 5 4

No 12 2

Prednisone

Yes 10 6

No 7 0

doi:10.1371/journal.pone.0087585.t003
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receive prednisone during their treatment. All but one of the dogs

with clinical benefit (CB) associated with KPT-335 administration

(PR or SD.4 weeks) had NHL with a median TTP in responding

dogs of 66 days (range 35–256 days).

Dose Expansion Study
Patient demographics. Based on the results of the dose

escalation study and responses to therapy observed in dogs with

NHL, an additional 6 dogs with NHL received KPT-335 at

1.5 mg/kg given on a Monday/Wednesday/Friday schedule.

Patient demographics are again provided in Table 3. The median

age was 6.75 years and the median weight was 23.95 kg. Four of

the dogs had previously received treatment for their NHL

(primarily multi-agent chemotherapy), and all were receiving

prednisone as part of their therapy, with demonstrated progression

of disease prior to study entry. These dogs were maintained on

prednisone at 0.5 mg/kg either daily or every other day during

KPT-335 administration. Two other dogs had not received any

prior therapy and prednisone at 0.5 mg/kg given every other day

was administered to alleviate anorexia/inappetence after 28 days

on study for the duration of KPT-335 treatment.

Clinical toxicities. As with the dose escalation portion of the

study, the most common toxicities were gastrointestinal in nature

and primarily grade 1 and 2 in severity, including anorexia, weight

loss, vomiting and diarrhea (summarized in Tables 4 and 5). The

grade 3 adverse events consisted of anorexia (n = 1), increased

ALT (n= 1, not clinically relevant), and increased ALP (n= 2,

most likely related to ongoing prednisone administration); one dog

had a grade 4 ALP elevation, again most likely related to

prednisone therapy.

Response to therapy. The median TTP for all dogs was 55

days (range 13–354 days). Two dogs had a PR for 35 and 354

days, and 4 dogs experience SD for longer than 28 days, for a CB

rate of 67% (4/6 dogs) with a median TTP of 83 days (range 35–

354 days).

Quality of Life Assessment
Dog owners were asked to complete a health related Quality of

Life (QOL) form prior to study entry and at each recheck visit

[38]. As shown in Figure 3, the overall quality of life did not

change significantly in dogs treated in either the dose escalation

study (p= 0.64) or dose expansion study (p= 0.47). These data

support the notion that clinical toxicities associated with KPT-335

did not decrease quality of life in treated dogs.

Discussion

XPO1 is responsible for the nuclear-cytoplasmic export of over

200 proteins [4,40] and several RNAs, many of which mediate

pathways that control proliferation and survival. Several studies

have now demonstrated that adequate function of XPO1 is

necessary for cancer cells to survive [2,3]. Interestingly, XPO1

inhibition appears to have selective effects primarily on cancer

cells, while sparing normal cells in most cases [19]. The

mechanisms responsible for this differential effect are not entirely

clear. The majority of tumor suppressor proteins (TSPs) such

including p53, p73, p21, p27, Rb and FOXO are exported from

the nucleus exclusively by XPO1 [7,41]. Inhibition of XPO1

results in forced nuclear retention, upregulation, and activation of

TSPs [1,2,3]. Restoration of TSP function can induce apoptosis in

cells with a damaged genome, including tumor cells. Since XPO1

inhibition leads to the restoration of so many TSPs at once, it is

theorized that anti-tumor activity can be independent of

oncogenic drivers responsible for maintenance of the neoplastic

Table 4. Constitutional and gastrointestinal toxicities.

Dose (mg/kg) No. of dogs Lethargy Anorexia Weight Loss Vomiting Diarrhea

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1.0 3 1 2 1 3 1 1

1.25 3 2 3 1 2 1

1.5 5 3 1 3 2 5 2 2 1 1

1.75 3 2 1 1 1 2 2 1 1 1

2.0 3 1 1 2 3 2 1 2 1 1

1.5 MWF 6 3 7 1 1 4 2 3 1 3 1

doi:10.1371/journal.pone.0087585.t004

Table 5. Hepatic and hematologic toxicities.

Dose (mg/kg) No. of dogs ALP ALT Bilirubin Anemia Thrombo-cytopenia

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1.0 3 4 2 1 2 1 2 1

1.25 3 1 2 3 1 1

1.5 5 4 1 3 1 1 3 2 3

1.75 3 1 1 1 1 1 1 1

2.0 3 2 1 1 2 1 2 1 1 2

1.5 MWF 6 2 1 1 4 2 1 1 1 1 1

doi:10.1371/journal.pone.0087585.t005
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phenotype [42,43]. It has also been suggested that when TSPs

localize to the nucleus, a genome survey is initiated that tumor

cells fail. In contrast, XPO1 inhibition in normal cells typically

results in a transient cell cycle arrest in the absence of cell death

and subsequent recovery once inhibition has been relieved. This

phenomenon was demonstrated in vitro where inhibition of XPO1

did not induce cytotoxicity in normal B, T and NK cells [15,19].

While several small molecule inhibitors of XPO1 have been

previously developed, only a few have been tested in mouse

models. Despite its marked toxicities in animals, the natural

product Leptomycin B is the sole XPO1 inhibitor that was tested

in human clinical trials prior to the development of the SINE

compounds. Consistent with side effects identified in mice, a Phase

I study in people induced severe anorexia and malaise while

providing no evidence of biologic activity prohibiting its further

clinical development [10]. The semi-synthetic Leptomycin B

derivative KOS-2464 with improved pharmacological parameters

compared with Leptomycin B, exhibited significant activity against

several tumor cell lines in vitro, while sparing normal cells. KOS-

2464 given intravenously was active in all mouse xenograft models

tested while inducing significantly less weight loss than Leptomycin

B [11]. An oral small molecule reversible inhibitor of XPO1,

CBS9106 induced cell cycle arrest and apoptosis in 60 different

human tumor cell lines and suppressed tumor growth in mouse

xenografts without any significant morbidity or mortality [44].

Both KOS-2464 and CBS9106 have not yet been evaluated in

human clinical trials.

SINE compounds are a series of orally bioavailable, slowly

reversible inhibitors of XPO1 that demonstrate high specificity for

target, based on covalent binding to the reactive cysteine 528

residue in the cargo binding domain [12,15,17,19]. Several of the

early analogs have been evaluated in vitro and in mouse models of

cancer and all have shown excellent biologic activity with minimal

toxicity. KPT-185 and KPT-276 were shown to be active against

AML cell lines and primary blasts from patients, and significantly

prolonged the survival of leukemic mice in a FLT3-ITD+ AML

xenograft model [14,17]. Similar results were obtained with KPT-

251 in a CLL mouse model [15]. Activity of KPT-185 and KPT-

276 was demonstrated against MCL, follicular lymphoma and

DLBCL both in vitro and in mouse models of disease [18,45].

Inhibition of XPO1 using KPT-185, -251, -276, and -330

impaired melanoma survival in both BRAF mutant and wild-type

melanoma cell lines and in mouse xenografts [46]. Furthermore,

SINE compounds exhibited synergistic activity with BRAF

inhibitors PLX4720 and PLX4032 against BRAF mutant mela-

noma [46]. Lastly, several of the SINE compounds including

KPT-330 have shown activity against pancreatic cell tumor lines

in vitro and slowed tumor growth of subcutaneous and orthotopic

xenograft tumors [12]. Importantly, all of the compounds tested

exhibited a good safety profile in the mouse models.

Figure 3. Trends in quality of life in dogs treated with KPT-335. An overall score was created based on answers to questions on the quality of
life questionnaire. The scores from each question were summed resulting in an overall quality of life score which could range from 23 to 115. These
are represented graphically in the figure above where scores for each patient are graphed over time (each line represents a patient). Trends in quality
of life during the study were examined using linear mixed models. The overall quality of life did not change significantly in dogs treated in either the
(A) dose escalation study (p = 0.64) or (B) dose expansion study (p = 0.47).
doi:10.1371/journal.pone.0087585.g003
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The purpose of the current study was first to evaluate the effect

of SINE compounds in canine tumor cell lines, and then second, to

assess KPT-335 in a spontaneous model of cancer that would

provide important information regarding dose, regimen, and

clinical toxicity profile thereby laying the groundwork for

subsequent human clinical trials. Our data demonstrate that

similar to the case of human cancer cell lines, KPT-185, KPT-214

and the clinical candidate KPT-335 all demonstrate inhibition of

cell proliferation and induction of apoptosis in multiple canine

tumor cell lines, with particularly strong activity against canine

NHL cells. This was anticipated as the sequence (Cys528

equivalent) and binding pockets of XPO1 from Schizosacchar-

omyces pombe up to humans are highly conserved [1,2,3]. In

canine NHL lines, biologic effects were noted in the low

nanomolar range with IC50 concentrations typically below

20 nM. This is concordant with the effects of other SINE

compounds against human AML, MCL and CLL cell lines.

Additionally, we found that KPT-214 was active against canine

mast cell tumor, osteosarcoma, and melanoma cell lines, also at

nanomolar drug concentrations; studies are ongoing to evaluate

the biologic activity of KPT-335 against canine melanoma cell

lines and inhibition of cell proliferation and viability has been

observed at IC50 concentrations ranging from 95–290 nM (data

not shown). Based on these data and information generated from

evaluation of KPT-335 administration to normal dogs, a Phase I

study was initiated in dogs with spontaneous cancers including

NHL, mast cell cancer, metastatic osteosarcoma and malignant

melanoma.

For the clinical trial in dogs with cancer, KPT-335 was used as

this compound exhibits excellent oral bioavailability and good

pharmacokinetic properties in normal laboratory dogs. In this

setting, doses below 3 mg/kg given either twice per week or three

times per week (Monday/Thursday or Monday/Wednesday/

Friday) were found to be tolerable, with 2 mg/kg considered to be

the MTD for chronic administration (data not shown). Given this

information, KPT-335 dosing for the Phase I study was initiated at

1 mg/kg Monday/Thursday. DLT were observed at 2 mg/kg and

as such the maximum tolerated dose was established as 1.75 mg/

kg. However, it is important to note that biologic activity was

observed at all dose levels including 1 mg/kg, with the dose of

1.25-1.5 mg/kg Monday/Thursday initially established as the

range tolerable over chronic dosing periods.

While dogs with NHL, mast cell tumor, osteosarcoma, and

melanoma were eligible to receive KPT-335 during the Phase I

dose escalation, the majority of dogs actually entered had NHL

(14/17). Within this group, 9/14 (64%) exhibited evidence of

clinical benefit (2 PR, 7 SD for greater than 28 days) following

KPT-335 administration and the median duration of treatment for

dogs with NHL was 10 weeks (range 5–35 weeks). Importantly,

biologic activity of KPT-335 was observed in dogs with NHL that

had not been previously treated as well as in dogs that relapsed or

were refractory to standard chemotherapy treatment (typically a

CHOP based regimen) and therefore were considered drug

resistant. The dose limiting toxicities observed consisted primarily

of gastrointestinal events (anorexia, weight loss, vomiting, and

diarrhea) and at 2 mg/kg, drug related hepatotoxicity (elevated

ALT, bilirubin). Although the hepatotoxicity did not result in

obvious clinical effects and rapidly resolved following drug

discontinuation, KPT-335 did induce loss of appetite that was

moderately refractory to standard anti-emetic therapy consisting of

metoclopramide, ondansetron, and/or maropitant. Inappetence

associated with minimal emesis has been observed with other

animal species, and anorexia is consistently observed across all

species, suggesting that it may be a mechanism-based toxicity.

Most of the dogs enrolled in this study had been receiving

prednisone prior to study entry and while this did appear to

enhance appetite, it did not completely resolve the toxicity in all

dogs.

The majority of dogs were dosed twice per week on a Monday/

Thursday basis, however a few dogs (n = 4) were switched to a

Monday/Wednesday/Friday regimen during ongoing therapy.

Based on these data and the observed biologic activity of KPT-335

in dogs with NHL, an expansion study was undertaken using the

three times per week regimen. We elected to use the dose of

1.5 mg/kg rather than the MTD of 1.75 mg/kg as we had

observed biologic activity at doses as low as 1 mg/kg and

anticipated having fewer challenges with anorexia and weight

loss. Clinical benefit of KPT-335 treatment occurred in 4/6 dogs

treated using this regimen, with responding dogs on drug for over

8 weeks (range 5–52). The Monday/Wednesday/Friday regimen

was associated with mainly grade 1 and 2 gastrointestinal toxicities

(anorexia, weight loss, vomiting, and diarrhea) that did not result

in drug discontinuation, although 3 dogs did undergo a dose

reduction to 1.25 mg/kg while on treatment.

As previously discussed, the primary barriers to clinical

development of previous XPO1 small molecule inhibitors have

consisted of marked anorexia and malaise observed in both mice

and humans. These toxicities have been viewed as a drug class

effect, expected to occur with all inhibitors that block XPO1

function. While anorexia was identified as one of the major dose

limiting events associated with KPT-335 administration, it was

deemed manageable when drug was administered between 1–

1.5 mg/kg on a 2 or 3 times per week basis. Indeed, several dogs

(n = 10) remained on drug for 8 weeks or longer (range 9–52)

indicating that KPT-335 is not only associated with biologic

activity in canine NHL, but can be well tolerated over chronic

administration. This is further supported by the fact that quality of

life scores, a key indicator of how dog owners perceive their dogs’

response KPT-335 therapy, did not diminish over time.

One of the limitations of this clinical trial was the potential

confounding use of prednisone in most of the dogs with NHL

treated with KPT-335 and its potential impact on response to

therapy. In both the dose escalation and dose intensification

portions of the study, approximately half of dogs with NHL were

receiving prednisone prior to study entry (11/20). For those that

experienced either PR or SD (for greater than 28 days), 7/13 had

experienced disease progression while on prednisone prior to study

entry, and the drug was not discontinued. The decision to

maintain prednisone use in these dogs was multifactorial. Several

of the dogs had been receiving drug for a long period of time and

would need to have the prednisone tapered over 2–3 weeks prior

to study entry. Additionally, given the potential issues with

anorexia, it was felt that continuing prednisone in the dogs already

being given drug might help to ameliorate this toxicity. With

respect to the remaining 6 dogs with NHL that experience CB, 4

of these were placed on low dose prednisone after 28+ days of

treatment to address anorexia. The remaining 2 dogs with CB

never received prednisone as part of their therapy. Therefore, 9/

13 dogs with CB from KPT-335 treatment either had progression

in the face of prednisone therapy or were not given prednisone

during the course of the clinical trial supporting the notion that the

observed biologic activity of KPT-335 was at least in part due to

XPO1 inhibition.

In summary, this phase I clinical trial represents the first

evaluation of a novel oral XPO1 inhibitor in a spontaneous large

animal model of cancer. Our data demonstrate that the

administration of KPT-335 results in an acceptable and tolerable

spectrum of clinical toxicities over prolonged dosing periods
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without impairment of quality of life. Furthermore, KPT-335

treatment contributed to either objective response to therapy or

prolonged disease stabilization in dogs with NHL, supporting the

notion that, as demonstrated in mouse models of disease, XPO1

inhibition has biologic activity in lymphoid malignancies. Given

the marked similarities between canine NHL and human NHL,

these data provide critical new information that has direct

applicability for the evaluation of SINE compounds in humans

with hematologic and other cancers.
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