2,588 research outputs found
Sleep apnoea and metabolic dysfunction.
Obstructive sleep apnoea (OSA) is a highly prevalent condition often associated with central
obesity. In the past few years, several studies have analysed the potential independent contribution of OSA
to the pathogenesis of metabolic abnormalities, including type 2 diabetes, the metabolic syndrome and nonalcoholic
fatty liver disease. New perspectives in OSA patient care have been opened by the promotion of
lifestyle interventions, such as diet and exercise programmes that could improve both OSA and the
metabolic profile. The rich clinical literature on this subject, together with the growing amount of data on
pathophysiological mechanisms provided by animal studies using the chronic intermittent hypoxia model,
urged the organising Committee of the Sleep and Breathing meeting to organise a session on sleep apnoea
and metabolic dysfunction, in collaboration with the European Association for the Study of Diabetes. This
review summarises the state-of-the-art lectures presented in the session, more specifically the relationship
between OSA and diabetes, the role of OSA in the metabolic consequences of obesity, and the effects of
lifestyle interventions on nocturnal respiratory disturbances and the metabolic profile in OSA patient
Information-theoretic postulates for quantum theory
Why are the laws of physics formulated in terms of complex Hilbert spaces?
Are there natural and consistent modifications of quantum theory that could be
tested experimentally? This book chapter gives a self-contained and accessible
summary of our paper [New J. Phys. 13, 063001, 2011] addressing these
questions, presenting the main ideas, but dropping many technical details. We
show that the formalism of quantum theory can be reconstructed from four
natural postulates, which do not refer to the mathematical formalism, but only
to the information-theoretic content of the physical theory. Our starting point
is to assume that there exist physical events (such as measurement outcomes)
that happen probabilistically, yielding the mathematical framework of "convex
state spaces". Then, quantum theory can be reconstructed by assuming that (i)
global states are determined by correlations between local measurements, (ii)
systems that carry the same amount of information have equivalent state spaces,
(iii) reversible time evolution can map every pure state to every other, and
(iv) positivity of probabilities is the only restriction on the possible
measurements.Comment: 17 pages, 3 figures. v3: some typos corrected and references updated.
Summarizes the argumentation and results of arXiv:1004.1483. Contribution to
the book "Quantum Theory: Informational Foundations and Foils", Springer
Verlag (http://www.springer.com/us/book/9789401773027), 201
Transverse Spin at PHENIX: Results and Prospects
The Relativistic Heavy Ion Collider (RHIC), as the world's first and only
polarized proton collider, offers a unique environment in which to study the
spin structure of the proton. In order to study the proton's transverse spin
structure, the PHENIX experiment at RHIC took data with transversely polarized
beams in 2001-02 and 2005, and it has plans for further running with transverse
polarization in 2006 and beyond. Results from early running as well as
prospective measurements for the future will be discussed.Comment: 6 pages, 2 figures, presented at Transversity 2005, Como, Ital
Recommended from our members
Beam Energy and Centrality Dependence of Direct-Photon Emission from Ultrarelativistic Heavy-Ion Collisions.
The PHENIX collaboration presents first measurements of low-momentum (0.41 GeV/c) direct-photon yield dN_{γ}^{dir}/dη is a smooth function of dN_{ch}/dη and can be well described as proportional to (dN_{ch}/dη)^{α} with α≈1.25. This scaling behavior holds for a wide range of beam energies at the Relativistic Heavy Ion Collider and the Large Hadron Collider, for centrality selected samples, as well as for different A+A collision systems. At a given beam energy, the scaling also holds for high p_{T} (>5 GeV/c), but when results from different collision energies are compared, an additional sqrt[s_{NN}]-dependent multiplicative factor is needed to describe the integrated-direct-photon yield
MicroRNAs in cardiac arrhythmia: DNA sequence variation of MiR-1 and MiR-133A in long QT syndrome.
Long QT syndrome (LQTS) is a genetic cardiac condition associated with prolonged ventricular repolarization, primarily a result of perturbations in cardiac ion channels, which predisposes individuals to life-threatening arrhythmias. Using DNA screening and sequencing methods, over 700 different LQTS-causing mutations have been identified in 13 genes worldwide. Despite this, the genetic cause of 30-50% of LQTS is presently unknown. MicroRNAs (miRNAs) are small (∼ 22 nucleotides) noncoding RNAs which post-transcriptionally regulate gene expression by binding complementary sequences within messenger RNAs (mRNAs). The human genome encodes over 1800 miRNAs, which target about 60% of human genes. Consequently, miRNAs are likely to regulate many complex processes in the body, indeed aberrant expression of various miRNA species has been implicated in numerous disease states, including cardiovascular diseases. MiR-1 and MiR-133A are the most abundant miRNAs in the heart and have both been reported to regulate cardiac ion channels. We hypothesized that, as a consequence of their role in regulating cardiac ion channels, genetic variation in the genes which encode MiR-1 and MiR-133A might explain some cases of LQTS. Four miRNA genes (miR-1-1, miR-1-2, miR-133a-1 and miR-133a-2), which encode MiR-1 and MiR-133A, were sequenced in 125 LQTS probands. No genetic variants were identified in miR-1-1 or miR-133a-1; but in miR-1-2 we identified a single substitution (n.100A> G) and in miR-133a-2 we identified two substitutions (n.-19G> A and n.98C> T). None of the variants affect the mature miRNA products. Our findings indicate that sequence variants of miR-1-1, miR-1-2, miR-133a-1 and miR-133a-2 are not a cause of LQTS in this cohort
System Size and Energy Dependence of Jet-Induced Hadron Pair Correlation Shapes in Cu+Cu and Au+Au Collisions at sqrt(s_NN) = 200 and 62.4 GeV
We present azimuthal angle correlations of intermediate transverse momentum
(1-4 GeV/c) hadrons from {dijets} in Cu+Cu and Au+Au collisions at sqrt(s_NN) =
62.4 and 200 GeV. The away-side dijet induced azimuthal correlation is
broadened, non-Gaussian, and peaked away from \Delta\phi=\pi in central and
semi-central collisions in all the systems. The broadening and peak location
are found to depend upon the number of participants in the collision, but not
on the collision energy or beam nuclei. These results are consistent with sound
or shock wave models, but pose challenges to Cherenkov gluon radiation models.Comment: 464 authors from 60 institutions, 6 pages, 3 figures, 2 tables.
Submitted to Physical Review Letters. Plain text data tables for the points
plotted in figures for this and previous PHENIX publications are (or will be)
publicly available at http://www.phenix.bnl.gov/papers.htm
Transverse momentum and centrality dependence of dihadron correlations in Au+Au collisions at sqrt(s_NN)=200 GeV: Jet-quenching and the response of partonic matter
Azimuthal angle \Delta\phi correlations are presented for charged hadrons
from dijets for 0.4 < p_T < 10 GeV/c in Au+Au collisions at sqrt(s_NN) = 200
GeV. With increasing p_T, the away-side distribution evolves from a broad to a
concave shape, then to a convex shape. Comparisons to p+p data suggest that the
away-side can be divided into a partially suppressed "head" region centered at
Delta\phi ~ \pi, and an enhanced "shoulder" region centered at Delta\phi ~ \pi
+/- 1.1. The p_T spectrum for the "head" region softens toward central
collisions, consistent with the onset of jet quenching. The spectral slope for
the "shoulder" region is independent of centrality and trigger p_T, which
offers constraints on energy transport mechanisms and suggests that the
"shoulder" region contains the medium response to energetic jets.Comment: 420 authors from 58 institutions, 6 pages, 4 figures. Submitted to
Physical Review Letters. Plain text data tables for the points plotted in
figures for this and previous PHENIX publications are (or will be) publicly
available at http://www.phenix.bnl.gov/papers.htm
Azimuthal Angle Correlations for Rapidity Separated Hadron Pairs in d+Au Collisions at sqrt(s_NN) = 200 GeV
We report on two-particle azimuthal angle correlations between charged
hadrons at forward/backward (deuteron/gold going direction) rapidity and
charged hadrons at mid-rapidity in deuteron-gold (d+Au) and proton-proton (p+p)
collisions at sqrt(s_NN) = 200 GeV. Jet structures are observed in the
correlations which we quantify in terms of the conditional yield and angular
width of away side partners. The kinematic region studied here samples partons
in the gold nucleus carrying nucleon momentum fraction x~0.1 to x~0.01. Within
this range, we find no x dependence of the jet structure in d+Au collisions.Comment: 330 authors, 6 pages text, 4 figures, no tables. Submitted to Phys.
Rev. Lett. Plain text data tables for the points plotted in figures for this
and previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Cross sections and double-helicity asymmetries of midrapidity inclusive charged hadrons in p+p collisions at sqrt(s)=62.4 GeV
Unpolarized cross sections and double-helicity asymmetries of
single-inclusive positive and negative charged hadrons at midrapidity from p+p
collisions at sqrt(s)=62.4 GeV are presented. The PHENIX measurements for 1.0 <
p_T < 4.5 GeV/c are consistent with perturbative QCD calculations at
next-to-leading order in the strong coupling constant, alpha_s. Resummed pQCD
calculations including terms with next-to-leading-log accuracy, yielding
reduced theoretical uncertainties, also agree with the data. The
double-helicity asymmetry, sensitive at leading order to the gluon polarization
in a momentum-fraction range of 0.05 ~< x_gluon ~< 0.2, is consistent with
recent global parameterizations disfavoring large gluon polarization.Comment: PHENIX Collaboration. 447 authors, 12 pages, 5 figures, 5 tables.
Submitted to Physical Review
Dilepton mass spectra in p+p collisions at sqrt(s)= 200 GeV and the contribution from open charm
The PHENIX experiement has measured the electron-positron pair mass spectrum
from 0 to 8 GeV/c^2 in p+p collisions at sqrt(s)=200 GeV. The contributions
from light meson decays to e^+e^- pairs have been determined based on
measurements of hadron production cross sections by PHENIX. They account for
nearly all e^+e^- pairs in the mass region below 1 GeV/c^2. The e^+e^- pair
yield remaining after subtracting these contributions is dominated by
semileptonic decays of charmed hadrons correlated through flavor conservation.
Using the spectral shape predicted by PYTHIA, we estimate the charm production
cross section to be 544 +/- 39(stat) +/- 142(syst) +/- 200(model) \mu b, which
is consistent with QCD calculations and measurements of single leptons by
PHENIX.Comment: 375 authors from 57 institutions, 18 pages, 4 figures, 2 tables.
Submitted to Physics Letters B. v2 fixes technical errors in matching authors
to institutions. Plain text data tables for the points plotted in figures for
this and previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
- …