Why are the laws of physics formulated in terms of complex Hilbert spaces?
Are there natural and consistent modifications of quantum theory that could be
tested experimentally? This book chapter gives a self-contained and accessible
summary of our paper [New J. Phys. 13, 063001, 2011] addressing these
questions, presenting the main ideas, but dropping many technical details. We
show that the formalism of quantum theory can be reconstructed from four
natural postulates, which do not refer to the mathematical formalism, but only
to the information-theoretic content of the physical theory. Our starting point
is to assume that there exist physical events (such as measurement outcomes)
that happen probabilistically, yielding the mathematical framework of "convex
state spaces". Then, quantum theory can be reconstructed by assuming that (i)
global states are determined by correlations between local measurements, (ii)
systems that carry the same amount of information have equivalent state spaces,
(iii) reversible time evolution can map every pure state to every other, and
(iv) positivity of probabilities is the only restriction on the possible
measurements.Comment: 17 pages, 3 figures. v3: some typos corrected and references updated.
Summarizes the argumentation and results of arXiv:1004.1483. Contribution to
the book "Quantum Theory: Informational Foundations and Foils", Springer
Verlag (http://www.springer.com/us/book/9789401773027), 201