563 research outputs found

    Periodicity of high-order functions in the CNS Final progress report, year ending 30 Jun. 1971

    Get PDF
    Analysis of cerebral slow potentials underlying human attentive processes in central nervous syste

    Periodicity of high-order neural functions

    Get PDF
    The results of recent studies on higher order, integrative processes in the central nervous system are reported. Attempts were made to determine whether these processes exhibit any ongoing rhythmicity which might manifest itself in alterations of attention and alertness. Experiments were also designed to determine if a periodicity approximating that of the REM could be detected in various parameters of brain electrical activity

    SU(4) Fermi Liquid State and Spin Filtering in a Double Quantum Dot System

    Full text link
    We study a symmetrical double quantum dot (DD) system with strong capacitive inter-dot coupling using renormalization group methods. The dots are attached to separate leads, and there can be a weak tunneling between them. In the regime where there is a single electron on the DD the low-energy behavior is characterized by an SU(4)-symmetric Fermi liquid theory with entangled spin and charge Kondo correlations and a phase shift π/4\pi/4. Application of an external magnetic field gives rise to a large magneto-conductance and a crossover to a purely charge Kondo state in the charge sector with SU(2) symmetry. In a four lead setup we find perfectly spin polarized transmission.Comment: 4 pages, 4 figures, ReVTe

    Remote sensing the vertical profile of cloud droplet effective radius, thermodynamic phase, and temperature

    No full text
    International audienceCloud-aerosol interaction is no longer simply a radiative problem, but one affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and its consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil. The CLAIM-3D (3-Dimensional Cloud Aerosol Interaction Mission) satellite concept proposed here combines several techniques to simultaneously measure the vertical profile of cloud microphysics, thermodynamic phase, brightness temperature, and aerosol amount and type in the neighborhood of the clouds. The wide wavelength range, and the use of mutli-angle polarization measurements proposed for this mission allow us to estimate the availability and characteristics of aerosol particles acting as cloud condensation nuclei, and their effects on the cloud microphysical structure. These results can provide unprecedented details on the response of cloud droplet microphysics to natural and anthropogenic aerosols in the size scale where the interaction really happens

    Remote sensing the vertical profile of cloud droplet effective radius, thermodynamic phase, and temperature

    Get PDF
    Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. <br><br> Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil. <br><br> The CLAIM-3D (3-Dimensional Cloud Aerosol Interaction Mission) satellite concept proposed here combines several techniques to simultaneously measure the vertical profile of cloud microphysics, thermodynamic phase, brightness temperature, and aerosol amount and type in the neighborhood of the clouds. The wide wavelength range, and the use of multi-angle polarization measurements proposed for this mission allow us to estimate the availability and characteristics of aerosol particles acting as cloud condensation nuclei, and their effects on the cloud microphysical structure. These results can provide unprecedented details on the response of cloud droplet microphysics to natural and anthropogenic aerosols in the size scale where the interaction really happens

    QMCPACK: Advances in the development, efficiency, and application of auxiliary field and real-space variational and diffusion Quantum Monte Carlo

    Get PDF
    We review recent advances in the capabilities of the open source ab initio Quantum Monte Carlo (QMC) package QMCPACK and the workflow tool Nexus used for greater efficiency and reproducibility. The auxiliary field QMC (AFQMC) implementation has been greatly expanded to include k-point symmetries, tensor-hypercontraction, and accelerated graphical processing unit (GPU) support. These scaling and memory reductions greatly increase the number of orbitals that can practically be included in AFQMC calculations, increasing accuracy. Advances in real space methods include techniques for accurate computation of band gaps and for systematically improving the nodal surface of ground state wavefunctions. Results of these calculations can be used to validate application of more approximate electronic structure methods including GW and density functional based techniques. To provide an improved foundation for these calculations we utilize a new set of correlation-consistent effective core potentials (pseudopotentials) that are more accurate than previous sets; these can also be applied in quantum-chemical and other many-body applications, not only QMC. These advances increase the efficiency, accuracy, and range of properties that can be studied in both molecules and materials with QMC and QMCPACK

    Statistical mechanics of voting

    Full text link
    Decision procedures aggregating the preferences of multiple agents can produce cycles and hence outcomes which have been described heuristically as `chaotic'. We make this description precise by constructing an explicit dynamical system from the agents' preferences and a voting rule. The dynamics form a one dimensional statistical mechanics model; this suggests the use of the topological entropy to quantify the complexity of the system. We formulate natural political/social questions about the expected complexity of a voting rule and degree of cohesion/diversity among agents in terms of random matrix models---ensembles of statistical mechanics models---and compute quantitative answers in some representative cases.Comment: 9 pages, plain TeX, 2 PostScript figures included with epsf.tex (ignore the under/overfull \vbox error messages

    Rapid Submillimeter Brightenings Associated with a Large Solar Flare

    Get PDF
    We present high time resolution observations of Active Region 8910 obtained simultaneously at 212 and 405 GHz during a large Hα flare, which produced a soft X-ray class X1.1 event. Data were obtained with the new solar submillimeter telescope recently installed at the El Leoncito Observatory to explore this poorly known part of the solar emission spectrum. A small slow submillimeter enhancement (≤300 sfu) was associated to bulk emissions at X-rays, Hα, and microwaves. The event exhibited numerous submillimeter-wave 100-300 ms duration spikes, the larger ones with fluxes on the order of 220 and 500 sfu (±20%) at 212 and 405 GHz, respectively. A dramatic increase in the incidence rate of submillimeter spikes sets in as a new large loop system appears in AR 8910, and X-ray emission increases nearly 1 hr before the large flare. The brightening incidence rate (~20 per minute) correlates well with the large flare light curves at X-rays and Hα. The submillimeter spikes may be associated to microflares, waves, or quakes in flaring active regions.Fil: Kaufmann, Pierre. Universidade Presbiteriana Mackenzie; BrasilFil: Raulin, J. P. Universidade Presbiteriana Mackenzie; BrasilFil: Correia, E.. Universidade Presbiteriana Mackenzie; BrasilFil: Costa, J. E. R.. Universidade Presbiteriana Mackenzie; BrasilFil: Giménez de Castro, C. G.. Universidade Presbiteriana Mackenzie; BrasilFil: Silva, A. V. R.. Universidade Presbiteriana Mackenzie; BrasilFil: Levato, Orlando Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Complejo Astronómico "el Leoncito". Universidad Nacional de Córdoba. Complejo Astronómico "el Leoncito". Universidad Nacional de la Plata. Complejo Astronómico "el Leoncito". Universidad Nacional de San Juan. Complejo Astronómico "el Leoncito"; ArgentinaFil: Rovira, Marta Graciela. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Mandrini, Cristina Hemilse. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Fernández Borda, R.. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Bauer, O. H.. Max PlanckInstitut fur extraterrestrische Physik,; Alemani

    Rapid Submillimeter Brightenings Associated with a Large Solar Flare

    Get PDF
    We present high time resolution observations of Active Region 8910 obtained simultaneously at 212 and 405 GHz during a large Hα flare, which produced a soft X-ray class X1.1 event. Data were obtained with the new solar submillimeter telescope recently installed at the El Leoncito Observatory to explore this poorly known part of the solar emission spectrum. A small slow submillimeter enhancement (≤300 sfu) was associated to bulk emissions at X-rays, Hα, and microwaves. The event exhibited numerous submillimeter-wave 100-300 ms duration spikes, the larger ones with fluxes on the order of 220 and 500 sfu (±20%) at 212 and 405 GHz, respectively. A dramatic increase in the incidence rate of submillimeter spikes sets in as a new large loop system appears in AR 8910, and X-ray emission increases nearly 1 hr before the large flare. The brightening incidence rate (~20 per minute) correlates well with the large flare light curves at X-rays and Hα. The submillimeter spikes may be associated to microflares, waves, or quakes in flaring active regions.Facultad de Ciencias Astronómicas y Geofísica

    A Tunable Two-impurity Kondo system in an atomic point contact

    Full text link
    Two magnetic atoms, one attached to the tip of a Scanning Tunneling Microscope (STM) and one adsorbed on a metal surface, each constituting a Kondo system, have been proposed as one of the simplest conceivable systems potentially exhibiting quantum critical behaviour. We have succeeded in implementing this concept experimentally for cobalt dimers clamped between an STM tip and a gold surface. Control of the tip-sample distance with sub-picometer resolution allows us to tune the interaction between the two cobalt atoms with unprecedented precision. Electronic transport measurements on this two-impurity Kondo system reveal a rich physical scenario which is governed by a crossover from local Kondo screening to non-local singlet formation due to antiferromagnetic coupling as a function of separation of the cobalt atoms.Comment: 22 pages, 5 figure
    corecore