93 research outputs found

    Halogen bonding with carbon:directional assembly of non-derivatised aromatic carbon systems into robust supramolecular ladder architectures †

    Get PDF
    Carbon, although the central element in organic chemistry, has been traditionally neglected as a target for directional supramolecular interactions. The design of supramolecular structures involving carbon-rich molecules, such as arene hydrocarbons, has been limited almost exclusively to non-directional π-stacking, or derivatisation with heteroatoms to introduce molecular assembly recognition sites. As a result, the predictable assembly of non-derivatised, carbon-only π-systems using directional non-covalent interactions remains an unsolved fundamental challenge of solid-state supramolecular chemistry. Here, we propose and validate a different paradigm for the reliable assembly of carbon-only aromatic systems into predictable supramolecular architectures: not through non-directional π-stacking, but via specific and directional halogen bonding. We present a systematic experimental, theoretical and database study of halogen bonds to carbon-only π-systems (C-I⋯πC bonds), focusing on the synthesis and structural analysis of cocrystals with diversely-sized and -shaped non-derivatised arenes, from one-ring (benzene) to 15-ring (dicoronylene) polycyclic atomatic hydrocarbons (PAHs), and fullerene C60, along with theoretical calculations and a systematic analysis of the Cambridge Structural Database. This study establishes C-I⋯πC bonds as directional interactions to arrange planar and curved carbon-only aromatic systems into predictable supramolecular motifs. In &gt;90% of herein presented structures, the C-I⋯πC bonds to PAHs lead to a general ladder motif, in which the arenes act as the rungs and halogen bond donors as the rails, establishing a unique example of a supramolecular synthon based on carbon-only molecules. Besides fundamental importance in the solid-state and supramolecular chemistry of arenes, this synthon enables access to materials with exciting properties based on simple, non-derivatised aromatic systems, as seen from large red and blue shifts in solid-state luminescence and room-temperature phosphorescence upon cocrystallisation.</p

    Anti-proliferative Effects of Common Plant Extracts on Tumor Cells in Vitro

    Get PDF
    In 2018, the World Health Organization identified cancer as responsible for 1 in 6 deaths globally, encouraging the exploration of creative forms of cancer treatment. Our research interests include identifying anti-proliferative plant extracts and illuminating mechanisms of growth inhibition. In this study we measured the effects of Vitis vinifera (grapeseed), Juniperus communis (juniper berry), and Curcuma longa (turmeric) extracts on the proliferation of several normal and tumorigenic cell strains and lines (HFF-S2, HeLa, HepG2, MDA MB 231, and RAW 264.7). We performed dose response CyQUANT assays to analyze the effects on cell growth. We are using DNA analysis, recovery experiments, and DAPI staining to investigate whether our extracts induce apoptosis in these cells. Our results showed dose-dependent inhibition of cell growth in vitro with all three extracts but not with extracts from other plants. The results of this study suggest the potential for further study of components of grapeseed, juniper berry, and turmeric extracts as potential chemo preventive agents

    Azo dye polyelectrolyte multilayer films reversibly re-soluble with visible light

    Get PDF
    Polymeric multilayer films were prepared using a layer-by-layer (LBL) technique on glass surfaces, by repeated and sequential dipping into dilute aqueous solutions of various combinations of water-soluble polyanions (polyacrylic acid (PAA)), polycations (polyallylamine hydrochloride (PAH) or chitosan (CS)), with bi-functional water-soluble cationic azo dyes bismark brown R bismarck brown red or bismark brown Y (BBY), or anionic azo dyes allura red (ALR) or amaranth (AMA), as ionic cross-linkers. The electrostatically-assembled ionically-paired films showed good long-term stability to dissolution, with no re-solubility in water. However, upon exposure to low power visible light under running water, the films photo-disassembled back to their water-soluble constituent components, via structural photo-isomerization of the azo ionic crosslinkers. The relative rate of the disassembly (RRD) of the films was established using UV-Vis spectroscopy, demonstrating that these assemblies can in principle represent fully recyclable, environmentally structurally degradable materials triggered by exposure to sunlight, with full recovery of starting components. A density functional theory treatment of the allura red azo dye rationalizes the geometrical isomerization mechanism of the photo-disassembly and provides insight into the energetics of the optically-induced structural changes that trigger the disassembly and recovery

    The split property for locally covariant quantum field theories in curved spacetime

    Get PDF
    The split property expresses the way in which local regions of spacetime define subsystems of a quantum field theory. It is known to hold for general theories in Minkowski space under the hypothesis of nuclearity. Here, the split property is discussed for general locally covariant quantum field theories in arbitrary globally hyperbolic curved spacetimes, using a spacetime deformation argument to transport the split property from one spacetime to another. It is also shown how states obeying both the split and (partial) Reeh–Schlieder properties can be constructed, providing standard split inclusions of certain local von Neumann algebras. Sufficient conditions are given for the theory to admit such states in ultrastatic spacetimes, from which the general case follows. A number of consequences are described, including the existence of local generators for global gauge transformations, and the classification of certain local von Neumann algebras. Similar arguments are applied to the distal split property and circumstances are exhibited under which distal splitting implies the full split property

    Scoping carbon dioxide removal options for Germany–What is their potential contribution to Net-Zero CO2_{2}?

    Get PDF
    In its latest assessment report the IPCC stresses the need for carbon dioxide removal (CDR) to counterbalance residual emissions to achieve net zero carbon dioxide or greenhouse gas emissions. There are currently a wide variety of CDR measures available. Their potential and feasibility, however, depends on context specific conditions, as among others biophysical site characteristics, or availability of infrastructure and resources. In our study, we selected 13 CDR concepts which we present in the form of exemplary CDR units described in dedicated fact sheets. They cover technical CO2 removal (two concepts of direct air carbon capture), hybrid solutions (six bioenergy with carbon capture technologies) and five options for natural sink enhancement. Our estimates for their CO2 removal potentials in 2050 range from 0.06 to 30 million tons of CO2, depending on the option. Ten of the 13 CDR concepts provide technical removal potentials higher than 1 million tons of CO2 per year. To better understand the potential contribution of analyzed CDR options to reaching net-zero CO2 emissions, we compare our results with the current CO2 emissions and potential residual CO2 emissions in 2050 in Germany. To complement the necessary information on technology-based and hybrid options, we also provide an overview on possible solutions for CO2 storage for Germany. Taking biophysical conditions and infrastructure into account, northern Germany seems a preferable area for deployment of many concepts. However, for their successful implementation further socio-economic analysis, clear regulations, and policy incentives are necessary
    corecore