31 research outputs found

    Odor Evaluation and Gas Emission from Manure of Dairy Heifers Fed High/Low - Forage Quality and High/Low-Concentrate Diets

    Get PDF
    A heifer feeding trial evaluated the impact of high/low forage quality and high/low concentrate level nutrient-balanced diets on simultaneous odor and gas emissions from the manure. Gas concentration was determined using an infrared photoacoustic analyzer over a 24-hour period using a steady-state flux chamber setup containing urine:feces as-excreted from eight individual heifers. Odorous air samples were collected from chamber headspace and evaluated by six human assessors for pleasantness, intensity and detection threshold using a forced-choice dynamic olfactometer. Ammonia emission ranged from 0.64 to 3.94 mg NH3 cm-2 d-1 across diets. Average ammonia emission from the low concentrate (80% forage) diets (2.11 mg NH3 cm-2 d-1) was larger than the high concentrate (20% forage) diets (1.69 mg NH3 cm-2 d-1), but not significantly different. Carbon dioxide emission was significantly higher (p= 0.0143) in the low concentrate diets. There was a linear increase of methane emission as reduced quality forage (corn stover) was increased in the low-concentrate diet (p = 0.030). Nitrous oxide emissions were similar and low in all diets. Highest average odor emission (8.58 OU m-2 sec-1) was from the low concentrate, high forage quality (80% corn silage) diet while lowest emission (5.01 OU m-2 sec-1) was measured when forage quality was reduced (32% silage; 48% stover). Odor emission tended to be reduced with lower quality forage diets, but with no significant difference. The volume of feces produced from the high concentrate diet was about half that from the low concentrate diet heifers. But total manure produced by the high concentrate diet heifers was 23% higher due to increased urine production

    Lack of Evidence for Neonatal Misoprostol Neurodevelopmental Toxicity in C57BL6/J Mice

    Get PDF
    Misoprostol is a synthetic analogue of prostaglandin E1 that is administered to women at high doses to induce uterine contractions for early pregnancy termination and at low doses to aid in cervical priming during labor. Because of the known teratogenic effects of misoprostol when given during gestation and its effects on axonal growth in vitro, we examined misoprostol for its potential as a neurodevelopmental toxicant when administered to neonatal C57BL6/J mice. Mice were injected subcutaneously (s.c.) with 0.4, 4 or 40 µg/kg misoprostol on postnatal day 7, the approximate developmental stage in mice of human birth, after which neonatal somatic growth, and sensory and motor system development were assessed. These doses were selected to span the range of human exposure used to induce labor. In addition, adult mice underwent a battery of behavioral tests relevant to neurodevelopmental disorders such as autism including tests for anxiety, stereotyped behaviors, social communication and interactions, and learning and memory. No significant effects of exposure were found for any measure of development or behavioral endpoints. In conclusion, the results of the present study in C57BL/6J mice do not provide support for neurodevelopmental toxicity after misoprostol administration approximating human doses and timed to coincide with the developmental stage of human birth

    CyanoFactory, a European consortium to develop technologies needed to advance cyanobacteria as chassis for production of chemicals and fuels

    Get PDF
    CyanoFactory, Design, construction and demonstration of solar biofuel production using novel (photo)synthetic cell factories, was an R&D project developed in response to the European Commission FP7-ENERGY-2012-1 call “Future Emerging Technologies” and the need for significant advances in both new science and technologies to convert solar energy into a fuel. CyanoFactory was an example of “purpose driven” research and development with identified scientific goals and creation of new technologies. The present overview highlights significant outcomes of the project, three years after its successful completion. The scientific progress of CyanoFactory involved: (i) development of a ToolBox for cyanobacterial synthetic biology; (ii) construction of DataWarehouse/Bioinformatics web-based capacities and functions; (iii) improvement of chassis growth, functionality and robustness; (iv) introduction of custom designed genetic constructs into cyanobacteria, (v) improvement of photosynthetic efficiency towards hydrogen production; (vi) biosafety mechanisms; (vii) analyses of the designed cyanobacterial cells to identify bottlenecks with suggestions on further improvements; (viii) metabolic modelling of engineered cells; (ix) development of an efficient laboratory scale photobioreactor unit; and (x) the assembly and experimental performance assessment of a larger (1350 L) outdoor flat panel photobioreactor system during two seasons. CyanoFactory - Custom design and purpose construction of microbial cells for the production of desired products using synthetic biology – aimed to go beyond conventional paths to pursue innovative and high impact goals. CyanoFactory brought together ten leading European partners (universities, research organizations and enterprises) with a common goal – to develop the future technologies in Synthetic biology and Advanced photobioreactors
    corecore