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Abstract

Background: Intra-cellular and inter-cellular protein translocation can be observed by microscopic imaging of
tissue sections prepared immunohistochemically. A manual densitometric analysis is time-consuming, subjective
and error-prone. An automated quantification is faster, more reproducible, and should yield results comparable to
manual evaluation. The automated method presented here was developed on rat liver tissue sections to study the
translocation of bile salt transport proteins in hepatocytes. For validation, the cholestatic liver state was compared
to the normal biological state.

Results: An automated quantification method was developed to analyze the translocation of membrane proteins
and evaluated in comparison to an established manual method. Firstly, regions of interest (membrane fragments)
are identified in confocal microscopy images. Further, densitometric intensity profiles are extracted orthogonally to
membrane fragments, following the direction from the plasma membrane to cytoplasm. Finally, several different
quantitative descriptors were derived from the densitometric profiles and were compared regarding their statistical
significance with respect to the transport protein distribution. Stable performance, robustness and reproducibility
were tested using several independent experimental datasets. A fully automated workflow for the information
extraction and statistical evaluation has been developed and produces robust results.

Conclusions: New descriptors for the intensity distribution profiles were found to be more discriminative, i.e. more
significant, than those used in previous research publications for the translocation quantification. The slow manual
calculation can be substituted by the fast and unbiased automated method.

Background
Densitometric analysis provides information about the
distribution of the objects of interest. If different biologi-
cal states of a sample are analyzed, a quantitative com-
parison of the protein distributions can be performed.
The current manual method is subjective and error-
prone. An automated analysis can collect more data
points and be more objective in the choice of locations
measured.

Biological model
We used canalicular bile salt secretion in liver tissue as
a model to develop a workflow for automated micro-
scopy image analysis. The canalicular membranes of

adjacent hepatocytes, the most abundant liver cell popu-
lation [1,2], which limit tiny biliary ducts (the canaliculi)
[2], are of a particular interest here. Hepatocytes con-
tinuously secret bile acids across their canalicular mem-
brane [3]. Cholestatic liver diseases can result from a
dysregulation of transport proteins in the sinusoidal [4]
and the canalicular membranes [5]. In rat liver, the mul-
tidrug resistance protein 2 (Mrp2) as well as the bile
salt export pump (Bsep) are regulated on a short-term
scale by retrieval from and insertion into the canalicular
membrane in response to e.g. anisoosmolarity [6-13]. In
induced experimental cholestasis, the amount of Mrp2
in the canalicular membrane is reduced compared to
liver tissue from untreated rats. Internalized Mrp2 was
found in intracellular vesicles [7,9]. Liver perfusion in
rats demonstrated that hyperosmolarity leads to rapid
retrieval of Bsep from the canalicular membrane,
reduces bile acid secretion and results in cholestasis.
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These protein translocations can be detected by analyz-
ing the corresponding fluorescent microscopy images
and can be quantified by toponomics methods.

Manual analysis
Several toponomic localization studies of Bsep and
Mrp2 were published so far [6,7,10,11,13,14] comparing
transport protein distribution by manual processing of
microscopic images. By means of immunofluorescence,
proteins of interest (such as Bsep or Mrp2 and Zo-1,
zonula occludens 1, a tight junction associated protein)
were labeled with fluorescent markers. Zo-1 was used to
localize the canaliculi, as the tight junctions delimitate
the lateral from the canalicular membrane domains and
the canalicular membrane of adjacent hepatocytes from
the canalicular lumen. Two roughly parallel Zo-1 lines
signal the presence of a canaliculus running parallel to
the image plane of the microscope. An example of a sui-
table canaliculus is shown in Figure 1A. Such confocal
microscopic images were manually assessed and pro-
cessed previously. A standard dataset included 10
images of different tissue regions per biological condi-
tion, while only 10 measurements were performed on
each image. We have developed a new method based on
automated image analysis that substitutes the manual
evaluation. This method is fast, unbiased and extracts
information from over a thousand data points per
image.

Toponomics
The toponome is an account of the temporal and spatial
organization of biological molecules, in particular pro-
teins, within the structures of the organism, mainly on
the level of cellular, subcellular and supercellular struc-
tures [15]. This analysis is also called topological proteo-
mics or location proteomics [16,17].

Topological proteomics emphasizes the measurement
of the spatial distribution of single or multiple proteins,
while the term toponome describes the combined topo-
logical information in a cell and focuses on the underly-
ing laws of this spatial arrangement. Laws in this
context do not necessarily mean causal relations, but
models of spatial distribution. The goal of toponomic
modeling is to reduce image data to a compressed
description of the spatial and structural relationships.
The molecular markers can be classified as functional or
structural. The structural marker defines reference
structures while the functional marker is the object of
interest in terms of spatial relations.
Spatial relations can be captured in different dimen-

sionalities. Translocation studies are based on the quan-
titative assessment of marker concentrations in bounded
regions (for example, nucleus-to-cytoplasm, see [18]).
Protein co-localization studies can be based on measur-
ing and evaluating isotropic distributions of distances
between pixels [19]. If the former is described as a 2-
dimensional analysis (regions), the latter should be
regarded as 0-dimensional (points). The method
described here is based on 1-dimensional modeling
(orthogonal section to a membrane segment). A com-
parable method for tissue samples is described in [20].

Results
Spatial relationships can be described as geometrical
relations between functional objects (of different kinds)
and between functional and structural entities. To derive
spatial relationships in toponomic modeling, a multi-
step workflow is required:

1. Establish structural entities by pattern recognition.
2. Establish a representative group of objects, which
we can define geometry relations for.

Figure 1 Structure identification. A. Representative canaliculus suitable for intensity profile extraction. It is straight and uniform, tight junctions
are symmetrical, undisrupted and run in parallel. Protein intensity profiles of a length 8 μm are extracted by measuring the pixel intensities of
two channels (Bsep, red, functional marker protein; Zo-1, green, structural marker protein) perpendicular to the canaliculus. For example, one of
the possibly extracted profiles is shown by a white line. B. Canalicular regions are extracted using the foreground-background detection function
of the Zeta software [21]. Foreground mask of the canaliculus shown in A. White areas are considered for further processing. C. Skeletonization
results.
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3. Collect the geometric relations (such as distances)
of the population of interest as a density plot into a
histogram.
4. Evaluate the shape of the histogram with respect
to the expectations from a biological model. Beha-
viors distinguished in the biological model cause dif-
ferent distributions (histogram shapes). Ideally, a
single numerical descriptor is derived that discrimi-
nates behaviors.

While the calculations (3) and (4) can easily be per-
formed automatically, (1) and (2) are more challenging,
in particular in tissue sections. (1) and (2) are highly
relevant, though, for the robustness of the overall
method. To capture changes in the spatial distribution
with high sensitivity, establishing a suitable numerical
descriptor is also very important.

Algorithm
We have specified and implemented a workflow for the
automated quantification of the protein translocation
consisting of several methods. Figure 2 illustrates the
complete algorithm. The individual steps and the rea-
soning behind their choice is presented in the following
sections.
Structure identification
As the first step, canalicular membranes are identified in
the fluorescent microscopy images using the fore-
ground-background detection function of the software
Zeta [21], which implements a supervised learning
approach to image region detection [22-24]. Representa-
tive examples of foreground and background regions (e.
g. canalicular membranes and cellular lumen, respec-
tively) are manually labeled in the image as training data
for the machine learning. Within a square window a
number of texture features are calculated [25-27]. The
machine learning algorithm builds a classification model
and extracts bit masks for the background and

foreground of the whole image. High intensity fragments
with high contrast to surrounding pixels are discrimi-
nated from low contrast background [28]. If a dataset is
homogeneous and all microscopic images have a similar
intensity range, the foreground detection can be trained
on one image and applied to the whole dataset. In case
of inhomogeneous data, training examples from several
images have to be used. Figure 1B shows the foreground
detection result of Figure 1A. The foreground regions
(white) are considered for further processing.
In the next step, the foreground regions are refined

and cleaned from noise. Morphological opening [29]
deletes tiny objects, which might have been created by
the foreground-background detection. Then, all small
objects are deleted from the foreground mask to exclude
potentially damaged or incomplete canaliculi. Subse-
quent morphological closing eliminates gaps, which
were possibly introduced by morphological opening. A
final cleaning step eliminates left over small objects.
In the following step, skeletonization of the fore-

ground regions is performed according to Euler charac-
teristics [30]. The obtained skeleton is pruned by
deleting short branches that are attached to the main
skeleton line. Pixels of the shorter branches are deleted
one by one from four directions until no further dele-
tion is possible. Only those parts of the skeleton are left
that extend in the direction of the long axis of the mem-
brane segments.
Pruning the skeleton is motivated by the manual strat-

egy of selecting membrane segments for the intensity
profile extraction. Only long, clean and unbranched
membrane segments are suitable for analysis. Therefore,
smaller foreground fragments and branching points with
their neighbors are deleted from the skeleton (see Figure
1C).
Marker distribution profiling
Intensity distribution profiles are retrieved for the pro-
teins of interest (Bsep, Zo-1) orthogonally to the

Figure 2 Schematic representation of the developed automated workflow for the protein translocation analysis. Canaliculi are identified
in the images by foreground-background detection, followed by cleaning from noise using morphological operations and thresholding.
Foreground regions are then skeletonized and pruned. Further, fluorescence intensity profiles are extracted perpendicular to the selected
skeleton fragments. Profiles undergo the selection by empirically identified criteria and ranking according to the quality parameters. Zones are
identified in average intensity profiles and numerical descriptors are evaluated. Wilcoxon rank sum test is applied to compare datasets.

Domanova et al. BMC Bioinformatics 2011, 12:370
http://www.biomedcentral.com/1471-2105/12/370

Page 3 of 13



skeleton. At every pixel of the skeleton the following
operations are performed. Firstly, a tangent is fitted to
the skeleton line at this pixel, so that the direction of
this particular membrane segment is identified. Then,
an orthogonal line is drawn through this pixel that
spreads equally to both sides of the skeleton. Along this
orthogonal line, the pixel intensities are extracted and
recorded. Similar to [11], the width of the profile is
increased by also adding intensity from neighboring par-
allel lines. An average of several such intensity profiles
represents a wider profile, calculated at the given pixel.
Intensity profiles are extracted both for the structural
marker (Zo-1) and the functional marker (Bsep).
Only a subset of the extracted intensity profiles clearly

represent the translocation phenomenon. For example,
in confocal imaging, profiles are not representative if the
focal image plane does not cut the canaliculus in the
principal axis (Figure 3). Humans select membrane frag-
ments that are symmetrical, contrasty and clean. In
order to implement such a strategy, Zo-1 intensity pro-
files are selected according to the four conditions
described below.
Firstly, membrane segments non-parallel to the image

plane are filtered out. Profiles extracted there exhibit
Zo-1 intensity peaks of unequal height, indicating that
the image plane does not match the orientation of the
canaliculus. Therefore, the first condition restricts the
height difference between the two local maxima. The

second condition constrains the distance between the
two peaks, as the variation range of canalicular widths is
known. The third condition eliminates intensity profiles
where the local minimum between the two peaks is not
low enough (low contrast). A small intensity difference
between Zo-1 peaks and valley might be caused by a
damaged tissue region. It may also indicate that the
focal plane is above or below the tight junctions, result-
ing in a low Zo-1 intensity. High quality Zo-1 profiles
have two prominent peaks separated by a low local
minimum, and have flat tails on the sides. Noisy profiles,
in contrast, show further local maxima, and are elimi-
nated by the fourth selection criterion. Only if all four
conditions are fulfilled, a particular Zo-1 intensity pro-
file is considered to be valid. The respective Bsep inten-
sity profile is extracted along the same orthogonal line
and is passed to further analysis.
Bsep profiles can be normalized for a quantitative ana-

lysis in several ways. Firstly, the lateral coordinate sys-
tems of profiles can be centered, compensating for
skeleton lines not centered in the canaliculus. This
might be caused by the skeletonization algorithm, as it
uses only approximate foreground regions whose bor-
ders are not necessarily symmetric with the Zo-1 max-
ima. Secondly, protein distribution profiles can be
normalized to a standard distance between peaks. How-
ever, in the samples we have analyzed so far, variations
of the canalicular width were sufficiently small to not

Figure 3 Correlation of focal plane orientation and imaging of subcellular structures. Due to optical sectioning, images from confocal
microscopes represent thin slices of a specimen with an axial resolution of ≈ 500 nm (indicated in gray). However, in many cases the image
plane might not match the orientation of the canaliculi. Depending on the orientation of the hepatocyte, the image plane might not cut both
tight junctions, which delimitate the canaliculus, in the same plane. Consequently, the corresponding Zo-1 intensity profile does not exhibit two
symmetrical peaks. The automated profile selection algorithm eliminates Zo-1 intensity profiles with relative peak intensity discrepancy of more
than 15%. The illustration gives two examples with representative microscopic images.
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require such a scaling. And lastly, absolute intensity
values of the profiles can be scaled to a defined range
(e.g. [0, 1]). Our zonal descriptors presented in the next
section, however, obviate the need for such a
normalization.
The number of the extracted intensity profiles after

the automated selection is still much larger than in the
manual method. Therefore, we rank their quality and
use only the best profiles for the statistical evaluation.
The parameters of the selection process are used for the
ranking procedure. The first selection criterion (differ-
ence of peak intensities) is used for the ranking r1. The
second parameter (peak - valley contrast) leads to the
ranking r2, defined as the ratio of the central valley
height to the peaks height. The smaller the values of the
criteria, the higher the ranks assigned. Later, an
unweighted combination of r1 and r2 is calculated as
the final ranking, according to which 20 or 30 profiles
are taken for further analysis.
Toponomic characterization
Average Bsep and Zo-1 intensity profiles can be evalu-
ated visually for each image. Due to the selection pro-
cess, these averages already reveal the biological
structure well (tight junctions correspond to the two
symmetrical peaks in Zo-1 distribution), as Figure 4C
and 4F show. Nevertheless, for a toponomic analysis,
quantitative descriptors have to be established that reli-
ably distinguish different protein distributions according
to the underlying biological condition. For the chosen
biological model, we assume a lateral translocation of

the transport protein Bsep along the profile axis (center
to periphery, or membrane to cytoplasm) with unknown
extremes of regulation. We are therefore looking for a
numerical descriptor that varies with the transporter
distribution across the canalicular membrane and maxi-
mally distinguishes positive and negative controls.
Such descriptors can be applied to an average profile

as well as to all individual profiles. We have evaluated a
number of different descriptors to identify those achiev-
ing the highest discrimination rate. In previous studies,
protein distribution was described by the statistical var-
iance of the Bsep or Mrp2 intensity profiles
[6,7,10,11,13] and no profile subregions were distin-
guished. However, different zones can be clearly defined
in the profiles. The part of the profile between the Zo-1
peaks (tight junctions) is considered to be the interior of
the canaliculus, while the parts outside the tight junc-
tions are considered to be cytoplasm. Restricting the
analysis to particular zones (subregions) might improve
statistical significance of a descriptor. Zones are identi-
fied based on the Zo-1 profiles and are applied to the
respective Bsep profiles. Figure 5 illustrates our zone
model.
Because of the fixed-length zones, integrals of the

intensities can be compared as absolute numbers within
one image. However, immunofluorescence methods do
not allow absolute quantity measurements between
images. Therefore, relative descriptors of the protein dis-
tribution are preferred, such as ratios of intensity inte-
grals. In the following, a number of different descriptors

Figure 4 Averaged fluorescence intensity profiles with standard deviations. Data is shown for the first image of dataset K1 (Bsep,
functional marker protein - red; Zo-1, structural marker protein - green). A. All Zo-1 profiles (n = 4166). B. All centered Zo-1 profiles (n = 4166). C.
Accepted Zo-1 profiles after the selection procedure (n = 46). D. All Bsep profiles. E. All centered Bsep profiles. F. Accepted Bsep profiles.

Domanova et al. BMC Bioinformatics 2011, 12:370
http://www.biomedcentral.com/1471-2105/12/370

Page 5 of 13



will be evaluated (see Table 1). Two of them are pre-
sented as examples:

D =
sum (Zone2a + Zone2b)
sum (Zone4a + Zone4b)

, (1)

F =
sum (Zone5)

sum (Zone5) + sum (Zone6a + Zone6b)
, (2)

Descriptor D is calculated as a ratio of Bsep fluores-
cence intensities at the peaks of the Zo-1 profile relative
to the intensities of Bsep in the cytosol far from the
canalicular membranes. Compared to control, the values
of this descriptor are expected to decrease under chole-
static conditions. Bsep internalization affects sum
(Zone2a + Zone2b) by broadening of the Bsep intensity
profile. It also leads to an elevated Bsep fluorescence
intensity in the cytoplasm due to immunoreactive vesi-
cles, increasing sum(Zone4a + Zone4b). As the lengths
of zones are kept constant for all profiles, values of the
descriptor can be easily compared even between the
images. Descriptor F (internalization degree) represents
a ratio of the Bsep intensity inside the canaliculus rela-
tive to the total Bsep intensity in the profile.

Validation
Two representative image datasets of rat livers were pre-
pared by the University Clinic Düsseldorf and will be
referred to as K1 (control samples) and T1 (liver sam-
ples with induced experimental cholestasis), respectively.
K1 and T1, each contain 10 images of different regions
of the respective samples. It is known that Bsep is
retrieved from the canalicular membrane under chole-
static conditions [31]. The expected result of the auto-
mated translocation analysis is to detect less Bsep in the
canalicular membrane and an increased amount of Bsep
in intracellular vesicles in T1 relative to K1.
The automated quantification workflow was applied to

the datasets K1 and T1. Image processing followed by
the automated profile extraction resulted in approxi-
mately 4000 profiles per image. Profile selection reduced
this number to roughly 150 per image. Figure 4 illus-
trates improvements of the average plots of all profiles
(n = 4166) after the centering (n = 4166) and after the
profile selection (n = 46) for the first image of K1.
Then, 10 profiles per image were extracted manually

by another expert. Descriptor values and statistical var-
iances were computed for all automatically extracted
and all manually obtained Bsep profiles. Median and
standard deviation values indicate a strong

Figure 5 Zone model for intensity profiles. Zones with fixed
length are calculated for the accepted Zo-1 profiles. Firstly, two
peaks are identified, and the center of the profile is found. Zone 1
has a length of 5 pixels (0.5 μm), and is centered between the
peaks. Its length was chosen according to the empirical
determination of canalicular width (0.8 - 2.5 μm). The integral
intensity of zone 1 reveals the amount of Bsep in the center of the
canaliculus. Zones 2a and 2b (5 pixels each) are centered on the
peaks and indicate protein concentration in the canalicular
membrane. To analyze the internalization of transport proteins,
intracellular zones were defined. Zones 3a and 3b (5 pixels each)
describe intracellular fluorescence intensities close to the canalicular
membrane. Zones 4a and 4b are situated closer to the centers of
hepatocytes and measure 10 pixels each. Zone 5 covers the
fluorescence intensities in the interior of the canaliculus between
the peaks, while zone 6a and 6b combine the intracellular
intensities of the profile from the maximum values of the peaks to
the ends.

Table 1 Descriptor formulas developed for the evaluation
of the protein translocation

Descriptor Formula

X sum1/sum2

Y sum1/sum3

Z sum1/sum4

A sum1/(sum2 + sum3)

B sum1/(sum3 + sum4)

C sum2/sum3

D sum2/sum4

E sum2/(sum3 + sum4)

F sum5/(sum5 + sum6)

Table 2 Descriptor values for the dataset K1.

Descriptor Automated Manual

Median Stdv Median Stdv

C 1.93 0.624 1.97 0.639

D 1.31 0.494 1.15 0.380

Internalization Degree 0.558 0.185 0.514 0.149

Variance 0.056 0.017 0.056 0.015

Comparison of manual and automated evaluation
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correspondence between the automatic and manual
results (see Table 2). Descriptor histograms show that
both methods lead to almost equal distributions of
variables.
As distributions of the descriptor variables are not

known by default, a generally applicable statistical test
has to be chosen. The Wilcoxon rank sum test does not
make any assumptions on the variables’ distribution
[11]. Furthermore, the number of extracted profiles is
not known in advance and may vary between the data-
sets. Hence, the unpaired Wilcoxon rank sum test is
chosen. It describes whether distributions of the descrip-
tor variables differ significantly or not. Two samples are
considered to be significantly distinct if the p-value is
smaller than 0.05.
Wilcoxon rank sum tests were performed on the cal-

culated descriptor values for the comparison of the data-
sets K1 and T1. The null hypothesis assumed that no
internalization of Bsep took place in T1 (experimental
cholestasis) relative to K1 (control conditions). As the
Wilcoxon rank sum test is sensitive to the number of
data points, we evaluated the automated and the manual
methods with equal sample sizes (100 vs. 100 profiles).
We randomly selected 100 profiles from those automati-
cally extracted and selected for each dataset. The corre-
sponding descriptor values were used for the statistical
evaluation. These operations were repeated 100 times,
and the median p-values are reported in Table 3.
Additionally, a simple classifier was trained to evaluate

whether individual descriptors are suitable for diagnostic
discrimination between different biological conditions
(Figure 6). Such an evaluation was performed for the
statistical variance and the descriptor D, which exhibited
one of the lowest p-values among the newly developed
descriptors. A crossing point of the variable’s density

plots (from the positive and the negative control) was
set as a threshold for the discrimination. After the pre-
diction, the classifier was assessed by its precision and
recall values [32] (see Table 4).
Automated and manual evaluation were reproduced in

three independent cholestatic liver preparations and the
respective control animals (K2, K3 (controls) and T2,
T3 (induced cholestasis)). Bsep internalization was con-
firmed in all test samples with comparable p-values. As
expected, the difference between the control datasets
(K2 and K3) was small and reported p-values were high
(see Table 5). In contrast, comparison of K2 and T2
(data not shown) and K3 and T3 (see Table 6) showed a
highly significant difference in Bsep distributions due to
the internalization under experimentally induced choles-
tasis. In both cases, the results were improved by using
top-ranked selected profiles. Mean values of the descrip-
tors were compared for these data (see Table 7).

Discussion
Rapid changes in transporter localization by endo- and
exocytosis of transporter-bearing vesicles from and into
the respective cell membrane have been identified as an
important regulatory mechanism for cells to adapt to
varying conditions. Previous studies of the membrane
transport protein distribution by manual analysis of

Table 3 Comparison of the datasets K1 (control) and T1
(induced cholestasis)

Descriptor P-value

Manual Automated

X 1.9 e-1 2.0 e-1

Y 4.8 e-4 8.3 e-6

Z 8.9 e-5 1.9 e-7

A 2.9 e-1 6.1 e-2

B 8.5 e-5 6.8 e-7

C 1.3 e-6 4.5 e-13

D 9.3 e-8 8.7 e-14

E 4.0 e-8 7.6 e-15

F 6.5 e-1 4.7 e-4

Variance 6.8 e-10 2.6 e-8

P-values obtained in the Wilcoxon rank sum tests performed on descriptor
values. For the automated method, median values from 100 random sampling
evaluations are reported.

Figure 6 Density plots of the values of descriptor D. The
crossing point of the two distributions (for the dataset T1 - red, for
the dataset K1 - black) is defined as a threshold for discrimination of
the datasets. A trivial classifier can be trained and assessed by
precision and recall values. Distributions are significantly distinct, but
overlap is still large.

Table 4 Simple classifier performance for the comparison
of the datasets K1 and T1

Precision, % Recall, % F-score, %

Variance 71.02 65.80 68.31

D 75.80 84.76 80.03
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fluorescence microscopy images were time consuming
and error-prone [6,7,10,11,13,14]. We developed an
automated quantification of the membrane protein dis-
tribution for fast and objective evaluation of experimen-
tal datasets.

Image processing
Initial image processing with the Zeta software has
demonstrated to be fast (max. 1 minute) and robust for
images of different sources. Foreground detection results
were in all cases acceptable, as no high contrast fore-
ground objects were misclassified. Varying grades of
background fluorescence, presence of further markers
and staining artefacts did not disturb the stable perfor-
mance. This illustrates the advantage of machine learn-
ing of model parameters over simple thresholding.
Variation in the performance of the foreground-back-

ground detection has only limited influence on final
results. Firstly, good membrane fragments might be
missed (false negatives) due to bad training examples
given or low contrast to the background. Secondly,
background regions might be classified as foreground
(false positives) if the training examples have not been
specific enough. In this case, the profile selection proce-
dure will filter out bad profiles (those without two sig-
nificant peaks in Zo-1 channel). And lastly, membrane
fragments can be segmented with wrong borders, shift-
ing a skeleton line from its optimal position. Conse-
quently, the respective intensity profiles will also be
axially shifted relative to the center of the membrane
fragment. However, profile selection will ensure that
only acceptable intensity profiles are used for the statis-
tical analysis. Therefore, weak performance of the object
detection step may lead to a reduction of the number of

profiles, but will not influence the further profile
evaluation.
Image processing was optimized on model images

with 512 × 512 pixel resolution and a pixel size of
approximately 300 nm. Thresholds for the deletion of
membrane segments were manually selected so that all
big high contrast canalicular membranes with two paral-
lel Zo-1 intensity lines were kept. Several skeletonization
techniques were tested on membrane fragments, and the
simplest one was selected, as the other techniques did
not affect the quality of the selected profiles. Generally,
our method yields comparable results even with altered
threshold configurations. The robustness of the method
was tested on images from other sources and with dif-
ferent pixel sizes.

Profile optimization
Microscopic images of the datasets K1 and T1 were
recorded with 1512 × 1512 pixel resolution and a pixel
size of 100 nm. Approximately 4000 individual profiles
per image were automatically extracted. Initial average
profiles of the structural marker (Zo-1) generally did
not reveal the structure of tight junctions, due to a high
level of variation of individual profiles. After the profile
selection, average intensity profiles were comparable to
those manually extracted. As in the manual profile
extraction, only long, straight and symmetrical mem-
brane fragments were considered. We could show that
the introduction of the criteria for profile selection
could substitute manual profile extraction based on
experience and biological knowledge (see Table 2, Table
3).
Both selection and peak-to-peak centering of the indi-

vidual profiles led to a significant improvement of the
average profiles. A Gaussian-like distribution of Zo-1
(Figure 4A, all points) did not comply with the expected
structure of tight junctions. It became visible in the
average profiles of the centered or selected points (Fig-
ure 4B and 4C, respectively). However, only the average
over the selected profiles (Figure 4C) showed two sym-
metrical peaks and significantly reduced standard
deviations.
There were approximately 150 profiles per image

remaining after the selection procedure, compared to 10
profiles, which were manually extracted by biologists.

Table 5 Comparison of the control datasets K2 and K3

Descriptor P-values

Not ranked 30 Top-ranked 20 Top-ranked

C 1.2 e-1 5.8 e-1 5.6 e-1

D 5.1 e-3 2.6 e-1 2.4 e-1

Variance 9.0 e-2 3.4 e-1 5.7 e-1

P-values obtained in the Wilcoxon rank sum tests performed on descriptor
values from all accepted or the top-ranked accepted profiles.

Table 6 Comparison of the datasets K3 (control) and T3
(induced cholestasis)

Descriptor P-values

Not ranked 30 Top-ranked 20 Top-ranked

C 1.3 e-11 2.5 e-13 8.0 e-14

D 3.8 e-6 2.8 e-8 7.7 e-9

Variance 2.9 e-4 1.5 e-7 5.0 e-7

P-values obtained in the Wilcoxon rank sum tests performed on descriptor
values from all accepted and the top-ranked accepted profiles.

Table 7 Descriptor values for datasets K2, K3 and T3
(using 20 top-ranked accepted profiles)

Descriptor K2 K3 T3

μ s μ s μ s

C 1.878 0.560 1.909 0.594 1.303 0.360

D 1.354 0.453 1.293 0.478 0.947 0.354

Variance 0.055 0.014 0.057 0.016 0.045 0.014
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Consequently, the automated workflow does not only
speed up the process and clean the data, but also
increases the number of data points obtained for the
analysis.
The suggested Zo-1 profile selection procedure was

tested for robustness and stability. Two of the four cri-
teria were varied, and numbers of accepted profiles were
reported. The first threshold constrains the allowed
height difference of the two Zo-1 peaks. The second
threshold limits the central valley height between these
peaks. Table 8 shows the numbers of accepted profiles
from the total of 2871 individual profiles extracted from
the first image of the dataset K1. The rejection percen-
tage was found to be slightly more sensitive to the first
threshold. However, no extreme dependencies on the
threshold values were recorded.

Descriptors for profiles and statistical tests
Quantification of the transport protein distribution was
significantly improved by the introduction of the zone
model. Earlier, only statistical variances of protein inten-
sity profiles were used [6,7,10,11,13]. Subdivision of the
intensity profiles into biologically meaningful zones
improved the quantitative separation of the toponomic
states. Wilcoxon rank sum tests demonstrated that the
difference in protein distribution between images from
cholestatic and control animals is more significant for
the new descriptors (see Table 3, automated). However,
the new descriptors did not outperform the statistical
variance when evaluated at the manually extracted pro-
files (see Table 3, manual).
P-values obtained in the Wilcoxon rank sum tests on

the new descriptors differed significantly among each
other (from e-1 to e-15, see Table 3). One factor seems
to be the selection of zones employed in the respective
formula. For example, those descriptors including inten-
sities in zone 1 (center of the canaliculus), e.g. X and A,
performed worse. In contrast, descriptors, which did not
include zone 1, namely C, D and E, led to the most sig-
nificant results, which may have physical reasons. Con-
focal fluorescence microscopy is an optical sectioning
technique, which acquires images of thin slices (≈ 500
nm) of a thick specimen [33]. Therefore, vesicle

movement perpendicular to the image plane will not
change the intensity, while lateral vesicle movement
within the image plane can be assessed by intensity dis-
tribution profiles. If there is a low Bsep signal in the
zone 1, it could be caused by two different situations,
which are indistinguishable for a confocal microscope.
Either the focal plane contains only a canalicular lumen,
or the canalicular microvilli membrane in the focal
plane has a reduced Bsep level due to the out-of-plane
transporter vesicles. Thus, intensity in the zone 1 is not
directly related to membrane content. Zone 1 can
apparently be neglected in intensity profile analysis,
which illustrates the advantage of the introduction of
profile zones.
Results of the Wilcoxon rank sum tests suggested a

significant difference between images from the datasets
K1 and T1. Still, further evaluations showed generally
significant overlaps in the density plots of the descriptor
values. An example of such a density plot is shown in
Figure 6. Training of a simple classifier allowed better
estimation of the descriptors’ differentiation facilities. A
model trained on the values of the descriptor D exhib-
ited an F-score [32] of approximately 80%. In compari-
son, a classifier trained on the statistical variance
reached an F-score of only 68%.
The internalization degree (descriptor F) represents an

intuitively understandable measure. In control animals,
image analysis showed that approximately 56% of the
total fluorescence intensity of the Bsep transporter was
localized between the two Zo-1 intensity maxima (cana-
licular membrane). Experimental cholestasis led to a
reduction of the descriptor F value to 47% caused by
the lateral Bsep translocation from the canalicular mem-
brane towards hepatocytes’ lumen. Despite being physi-
cally understandable, the internalization degree did not
yield the best p-values in Wilcoxon rank sum tests and
was not optimal to quantify transporter internalization.
Ranking of the selected profiles has proven to have an

impact on the evaluation of the datasets. A stronger
internalization effect was detected for K3 - T3 datasets
when using the top-ranked in comparison to all selected
profiles (see Table 6). Furthermore, two control datasets
(K2 and K3) were found to be more similar based on
the top-ranked profiles (see Table 5). Consequently, the
ranking procedure made statistical tests more sensitive.
Statistical evaluation of the datasets of the same biolo-

gical condition (e.g. comparison of K2 and K3 (see
Table 5), or T2 and T3 (data not shown)) revealed that
the difference between their Bsep distribution is small.
It can be explained by biological variability and limita-
tions of standardization in sample preparation. As
expected, the difference between cholestatic and control
datasets was much larger with very low p-values (com-
pare Table 5 and Table 6).

Table 8 Rejection percentage

Difference of peak height <

5% 15% 25% 35%

Valley height < 10% 32 107 151 194

20% 45 166 230 294

30% 56 179 264 333

40% 58 187 273 351

Numbers of accepted profiles (out of 2871) at different thresholds for the
selection criteria.
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Automated vs. manual method
The significance of statistical tests was much lower for
the manual method in comparison to the tests on all of
the automatically extracted and selected profiles, due to
the smaller number of profiles (data not shown). How-
ever, when using equal sample sizes, a very good corre-
lation of p-values can be noted between the manual and
the automated methods (see Table 3). Descriptors X
and A were the least eligible, while D and E showed the
best performance.
Initially, automatically extracted profiles contained

noise and were measured partly at the membrane frag-
ments unsuitable for the analysis. The introduction of
the selection procedure improved the quality of the
average intensity profiles, as shown by the reduced stan-
dard deviations (see Figure 4). Statistical tests on the
automatically extracted and selected profiles confirmed
the expected difference between the positive and nega-
tive controls, and correlated well with the results from
the manually obtained profiles.
Furthermore, the automated workflow processed a data-

set in approximately 30 minutes and performed statistical
tests between the datasets in about 15 minutes, while a
human would need several hours for such evaluations.
The software would be freely available on request to

anyone wishing to use it for non-commercial scientific
purposes.

Conclusions
We have developed an automated method to analyze
transport protein toponomics and compared it to the
known manual quantification. The automated intensity
profile extraction is faster and acquires a larger number
of data points than the manual method. Furthermore,
the criteria suggested for the profile selection are fully
reproducible. Evaluation of the automatically and manu-
ally extracted data correlated well. Several points contri-
bute to this result. Firstly, automated profile selection is
comparable to the manual profile extraction based on
the biological knowledge. Secondly, introduction of the
zone model improved the results by identification of
regions, which are particularly meaningful regarding the
internalization of membrane proteins. The suggested
descriptors characterize the datasets better than statisti-
cal variances of complete intensity profiles. The interna-
lization degree descriptor has a clear physical meaning
and illustrates the protein retrieval from the membrane
to decrease negative effects of bile acid secretion under
cholestatic conditions [31]. However, it did not perform
best among the newly developed descriptors.
The new method was tested with various configurations.

Even outside the optimal settings, robust results are pro-
duced. The same experiments were performed on 5
further datasets, including samples from a different

experimental setup (internalization of Bsep under hyperos-
molar conditions). In all these cases a good correlation
with manually obtained results was shown. Consequently,
the developed translocation analysis has proven to be
robust and to exhibit stable performance on various
datasets.

Methods
Rat liver tissue is used to develop an automated quanti-
fication of the membrane protein translocation on the
example of the cholestatic liver diseases. Ligature of the
common bile duct is used as a model for experimental
cholestasis. Extension of the evaluation method to
human liver samples is planned.

Rat bile duct ligature
The experiments were approved by the responsible local
authorities. Following general anesthesia, male Sprague
Dawley rats underwent double ligature of the proximal
common bile duct or sham operation (control animals)
as described previously [34]. Livers were removed 7 days
after a bile duct ligation or a sham operation.

Rat liver perfusion
Livers of male Wistar rats were perfused in situ as
described previously [6,7]. After a perfusion period of 20
minutes with normosmotic (305 mosmol/L) perfusion
buffer, a liver lobe was ligated, excised, and frozen in
isopentane precooled in liquid nitrogen (t = 0 minutes).
Liver perfusion was continued for additional 30-minute
periods with perfusion buffers of a desired osmolarity
(305 mosmol/L or 405 mosmol/L) until a second (t = 30
minutes) liver lobe was removed.

Cryosectioning and immunostaining of rat liver
Sample preparation and immunostaining were performed
according to a standard operating procedure to assure
reproducibility. The tissue samples were cut in 5 μm sec-
tions with a Leica Cryotom CM1950 (Leica, Bensheim,
Germany) and fixed with methanol for 10 minutes at -20°
C. Washing steps were performed in a washing station for
slides (Advalytix AdvaWash, Implen, Germany) for 15
minutes. Sections were sequentially incubated in a micro-
array hybridization station (Advalytix Slide Booster SB450,
Implen GmbH, Germany) with a combination of the pri-
mary antibodies (rabbit anti-Bsep, K12, 1:30 and mouse
anti-Zo-1, 1:750) for 2 hours at 28°C and a combination of
the secondary antibodies (Alexa Fluor 488-conjugated
goat anti-mouse, 1:500, green; Alexa Fluor 546-conjugated
goat anti-rabbit, 1:500, red) for 30 minutes at 37°C.

Image acquisition
Immunostained rat liver tissue samples were analyzed
using a LSM 510 confocal laser scanning system (Zeiss,
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Jena, Germany) with a 63 × Plan-Apochromat objective
(NA 1.4). The excitation wavelength was 488 nm for
Alexa Fluor 488 and 543 nm for Alexa Fluor 546. Emis-
sion was detected by a 505 - 530 nm (green) and a 560
- 615 nm bandpass filter (red). Image acquisition was
adjusted to a final pixel size of 100 nm. For each cryo-
section, images from 10 different regions were taken in
a randomized fashion and used for the analysis.

Manual determination of regions of interest and
measurement of fluorescence intensity profiles
Cryosections of rat liver were stained for the functional
marker Bsep and the structural marker Zo-1. The tight
junction protein complex forms the border between
canalicular and sinusoidal membranes. The areas for the
analysis were chosen by assessing the apparent integrity
of the canaliculi. Regions of interest were found where
the immunostaining of Zo-1 delineating the bile canali-
culi were undisrupted and parallel lines. Canalicular seg-
ments were expelled when they were bent, small or non
uniform. Figure 1A shows an example of a membrane
fragment suitable for analysis. Bsep and Zo-1 distribu-
tions were analyzed by extracting intensity profiles of
the red and green fluorescence perpendicular to the
canaliculi using the Profilizer software (developed by
Martin Becker). With this software users can view
images and interactively select the position of intensity
profiles. A user has to click two points symmetrically to
a membrane fragment in a microscopic image, and the
Profilizer will draw a line between them (an intensity
profile direction). It will also cut the line to 4 μm on
both sides of the membrane and output diagrams of
pixel intensities for each of the channels (the intensity
profiles themselves). These manually extracted intensity
profiles are exported for further evaluation.
The length of extracted intensity profiles was 8 μm

(Figure 1A), corresponding to 81 pixels with a pixel size
of 100 nm. Intensity profiles were accepted according to
the appearance of Zo-1 fluorescence. Acceptable inten-
sity profiles had two maxima of similar size and a mini-
mum between these peaks close to baseline level. An
empirical image analysis showed that canalicular dia-
meter varies in the range of 0.8 - 2.5 μm. Therefore the
profiles were excluded if the distance between the two
maximal intensities was < 10 or > 25 pixels. The immu-
nostaining of Bsep was disregarded for profile selection,
thus data acquisition was performed in a blinded fash-
ion. Ten intensity profiles were selected per image. This
manual analysis is subjective, as an expert makes the
decision where to extract the profiles based on their
experience. Moreover, the method is time consuming
and error-prone.

Parameters for the automated image processing
A square window of 15 pixels was used for the texture
feature extraction. Morphological operations were per-
formed with a 3 × 3 structural element. The first thresh-
olding eliminated objects with an area of less than 125
pixels. The following threshold was set to 250 pixels
and was greater than the previous one, because some
gaps were possibly closed and bigger fragments were
formed.
The applied skeletonization was based on the Euler

number for polygon networks and polyhedra:

E = e− k + f , (3)

where e is the number of corners, k defines the num-
ber of edges, and f is the number of faces [30]. An
image was scanned with 3 × 3 pixel window and an
Euler characteristic was calculated. Only those pixels
that had more than one foreground neighbor pixel were
considered for the deletion, in order to avoid shortening
lines from their ends. A pixel with at least two fore-
ground neighbors was then deleted if this operation did
not change the Euler number of the window, which
indicated the number of connected components. This
operation was performed until no further pixels could
be eliminated without changing the Euler characteristics.
Skeleton fragments left after pruning and deletion of
branching points were cleaned from objects smaller
than 7 pixels.
All thresholds mentioned above were identified

empirically for microscopic images with a resolution of
512 × 512 pixels (a pixel size of ca. 300 nm) and were
evaluated for the maximal robustness of the method.
For other resolutions, the values can be scaled
accordingly.

Intensity profile extraction, evaluation and normalization
The length of the calculated profiles should cover
approximately 8 μm, which translates to 81 pixels (near-
est odd value) for our images. To determine whether
the length of 81 pixels is sufficient, profiles of a length
up to 501 pixels (50 μm) were calculated and compared.
Rat hepatocytes have a diameter of 20 - 30 μm [35], so
that a profile of 501 pixels covers approximately the
fluorescence intensity distribution of one hepatocyte on
each side of the canaliculus. It was found that the inten-
sity of Bsep stayed nearly constant for distances of more
than 35 pixels from the center point. Consequently, a
total profile length of 81 pixels is sufficient.
The width of the profiles was varied from 0.1 to 1.1

μm (which corresponded to [1 - 11 pixels]). A width of
0.3 μm was found to be the most robust and least
biased towards good profiles.
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Formulas for the profile selection criteria are pre-
sented below:

maxValue1−maxValue2
maxValue2

< 0.15, (4)

7 <
∥
∥(
positionMax1− positionMax2

)∥∥ < 26, (5)

minValue
maxValue2

< 0.2, (6)

P60 (localmaxima)
maxValue2

< 0.4, (7)

where maxValue1 is the absolute maximum of the
Zo-1 intensity profile, maxValue2 is a height of the sec-
ond local maximum, and minValue defines the intensity
of the local minimum between the considered two local
maxima. Positions of the peaks on the profile are posi-
tionMax1 and positionMax2, respectively. P60 (local
maxima) is the 60th percentile of the local maxima
values.
The relative difference between the peaks (4) should

not exceed an empirically identified threshold of 15%.
The second condition (5) constrains the distance
between the two peaks, as the diameter of the canaliculi
varies in the range 0.8 - 2.5 μm. The third criterion (6)
filters out profiles with a valley not deep enough. The
last requirement (7) eliminates noisy profiles.
For centering of the lateral coordinate systems of

intensity profiles, firstly, a model profile is required that
defines necessary shifts. For this purpose an average Zo-
1 profile over all accepted profiles is calculated. Because
of the strict selection of profiles with two clear peaks
and the moderate amount of decentering in such
regions, the average of all accepted profiles will still
have two clear peaks, which define the average location
and width of canaliculi. Initially, the calculated model
profile is centered itself. Two peaks are detected and the
midpoint is set as the null point of the model profile.
The profile is cut to the length of 61 pixels to allow
cross-correlation (dot product) between Zo-1 profile
and the model profile to be calculated in 20 different
positions (+/- 10 pixels shift). Then, the Zo-1 profile is
overlaid with the shifted model profile. The maximum
among these dot products determines the optimal shift.
Both, individual Zo-1 and Bsep profiles, are shifted
respectively and cut to the length of 61 pixels.
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