16,796 research outputs found
Predicting the effects of climate change on Schistosoma mansoni transmission in eastern Africa
Background: Survival and fitness attributes of free-living and sporocyst schistosome life-stages and their intermediate host snails are sensitive to water temperature. Climate change may alter the geographical distribution of schistosomiasis by affecting the suitability of freshwater bodies for hosting parasite and snail populations. Methods: We have developed an agent-based model of the temperature-sensitive stages of the Schistosoma mansoni and intermediate host snail lifecycles. The model was run using low, moderate and high warming climate projections over eastern Africa. For each climate projection, eight model scenarios were used to determine the sensitivity of predictions to different relationships between air and water temperature, and different snail mortality rates. Maps were produced showing predicted changes in risk as a result of increasing temperatures over the next 20 and 50 years. Results Baseline model output compared to prevalence data indicates suitable temperatures are necessary but not sufficient for both S. mansoni transmission and high infection prevalences. All else being equal, infection risk may increase by up to 20% over most of eastern Africa over the next 20 and 50 years. Increases may be higher in Rwanda, Burundi, south-west Kenya and eastern Zambia, and S. mansoni may become newly endemic in some areas. Results for 20-year projections are robust to changes in simulated intermediate host snail habitat conditions. There is greater uncertainty about the effects of different habitats on changes in risk in 50 yearsâ time. Conclusions: Temperatures are likely to become suitable for increased S. mansoni transmission over much of eastern Africa. This may reduce the impact of control and elimination programmes. S. mansoni may also spread to new areas outside existing control programmes. We call for increased surveillance in areas defined as potentially suitable for emergent transmission
The impact of baryonic processes on the two-point correlation functions of galaxies, subhaloes and matter
The observed clustering of galaxies and the cross-correlation of galaxies and
mass provide important constraints on both cosmology and models of galaxy
formation. Even though the dissipation and feedback processes associated with
galaxy formation are thought to affect the distribution of matter, essentially
all models used to predict clustering data are based on collisionless
simulations. Here, we use large hydrodynamical simulations to investigate how
galaxy formation affects the autocorrelation functions of galaxies and
subhaloes, as well as their cross-correlation with matter. We show that the
changes due to the inclusion of baryons are not limited to small scales and are
even present in samples selected by subhalo mass. Samples selected by subhalo
mass cluster ~10% more strongly in a baryonic run on scales r > 1Mpc/h, and
this difference increases for smaller separations. While the inclusion of
baryons boosts the clustering at fixed subhalo mass on all scales, the sign of
the effect on the cross-correlation of subhaloes with matter can vary with
radius. We show that the large-scale effects are due to the change in subhalo
mass caused by the strong feedback associated with galaxy formation and may
therefore not affect samples selected by number density. However, on scales r <
r_vir significant differences remain after accounting for the change in subhalo
mass. We conclude that predictions for galaxy-galaxy and galaxy-mass clustering
from models based on collisionless simulations will have errors greater than
10% on sub-Mpc scales, unless the simulation results are modified to correctly
account for the effects of baryons on the distributions of mass and satellites.Comment: 15 pages, 9 figures. Replaced to match the version accepted by MNRA
Quantifying structural damage from self-irradiation in a plutonium superconductor
The 18.5 K superconductor PuCoGa5 has many unusual properties, including
those due to damage induced by self-irradiation. The superconducting transition
temperature decreases sharply with time, suggesting a radiation-induced Frenkel
defect concentration much larger than predicted by current radiation damage
theories. Extended x-ray absorption fine-structure measurements demonstrate
that while the local crystal structure in fresh material is well ordered, aged
material is disordered much more strongly than expected from simple defects,
consistent with strong disorder throughout the damage cascade region. These
data highlight the potential impact of local lattice distortions relative to
defects on the properties of irradiated materials and underscore the need for
more atomic-resolution structural comparisons between radiation damage
experiments and theory.Comment: 7 pages, 5 figures, to be published in PR
Hamiltonian, Energy and Entropy in General Relativity with Non-Orthogonal Boundaries
A general recipe to define, via Noether theorem, the Hamiltonian in any
natural field theory is suggested. It is based on a Regge-Teitelboim-like
approach applied to the variation of Noether conserved quantities. The
Hamiltonian for General Relativity in presence of non-orthogonal boundaries is
analysed and the energy is defined as the on-shell value of the Hamiltonian.
The role played by boundary conditions in the formalism is outlined and the
quasilocal internal energy is defined by imposing metric Dirichlet boundary
conditions. A (conditioned) agreement with previous definitions is proved. A
correspondence with Brown-York original formulation of the first principle of
black hole thermodynamics is finally established.Comment: 29 pages with 1 figur
Horizon energy and angular momentum from a Hamiltonian perspective
Classical black holes and event horizons are highly non-local objects,
defined in terms of the causal past of future null infinity. Alternative,
(quasi)local definitions are often used in mathematical, quantum, and numerical
relativity. These include apparent, trapping, isolated, and dynamical horizons,
all of which are closely associated to two-surfaces of zero outward null
expansion. In this paper we show that three-surfaces which can be foliated with
such two-surfaces are suitable boundaries in both a quasilocal action and a
phase space formulation of general relativity. The resulting formalism provides
expressions for the quasilocal energy and angular momentum associated with the
horizon. The values of the energy and angular momentum are in agreement with
those derived from the isolated and dynamical horizon frameworks.Comment: 39 pages, 3 figures, Final Version : content essentially unchanged
but many small improvements made in response to referees, a few references
adde
Worker heterogeneity, new monopsony, and training
A worker's output depends not only on his/her own ability but also on that of colleagues, who can facilitate the performance of tasks that each individual cannot accomplish on his/her own. We show that this common-sense observation generates monopsony power and is sufficient to explain why employers might expend resources on training employees even when the training is of use to other firms. We show that training will take place in better-than-average or âgoodâ firms enjoying greater monopsony power, whereas âbadâ firms will have low-ability workers unlikely to receive much training
Mixed state discrimination using optimal control
We present theory and experiment for the task of discriminating two
nonorthogonal states, given multiple copies. We implement several local
measurement schemes, on both pure states and states mixed by depolarizing
noise. We find that schemes which are optimal (or have optimal scaling) without
noise perform worse with noise than simply repeating the optimal single-copy
measurement. Applying optimal control theory, we derive the globally optimal
local measurement strategy, which outperforms all other local schemes, and
experimentally implement it for various levels of noise.Comment: Corrected ref 1 date; 4 pages & 4 figures + 2 pages & 3 figures
supplementary materia
The Entrepreneur\u27s Choice: Venture Capital Debt Financing with Adverse Selection
This paper studies the consequences of using a debt contract to raise venture capital for an entrepreneurial project in an adverse selection setting with different quality venture capitalists. The paper considers not only the likelihood of success of a one-time project being dependent on the quality of the venture capitalist, but also the problem of a reduced ownership value of future rents from the venture if the venture capitalist takes it over as the result of default of the entrepreneur. Expressions for the face value of debt required for pooling and separating equilibria are also derived. The existence of a separating equilibrium with bad quality venture capitalists is used to show how less reputable venture capitalists can survive in the marketplace. Finally, the paper uses a numerical example to demonstrate why the entrepreneurs of more profitable entrepreneurial firms may prefer to do business with bad quality venture capitalists
The Staging of Venture Equity Capital and Venture Capitalist Bargaining Power
In this paper we look at the effects of bargaining power on the types of entrepreneurial projects chosen by venture capitalists and show that a wealth-constrained venture capitalist prefers to provide equity financing to a two-stage rather than to a similar single-stage project. While the venture capitalist does not have bargaining power over the entrepreneur of a single-stage project and is thus unable to extract any surplus, the venture capitalist does have this advantage in a two-stage project and, provided the project is good, can demand a portion of the surplus as a pre-condition for providing follow-on capital. This suggests that venture capitalists should stage their capital investments in order to improve their bargaining power, allowing them to earn greater profits from successful entrepreneurial projects
X-ray Absorption Fine Structure in Embedded Atoms
Oscillatory structure is found in the atomic background absorption in
x-ray-absorption fine structure (XAFS). This atomic-XAFS or AXAFS arises from
scattering within an embedded atom, and is analogous to the Ramsauer-Townsend
effect. Calculations and measurements confirm the existence of AXAFS and show
that it can dominate contributions such as multi-electron excitations. The
structure is sensitive to chemical effects and thus provides a new probe of
bonding and exchange effects on the scattering potential.Comment: 4 pages plus 2 postscript figures, REVTEX 3.
- âŠ