5 research outputs found

    Molecular techniques and their limitations shape our view of the holobiont

    Get PDF
    It is now recognised that the biology of almost any organism cannot be fully understood without recognising the existence and potential functional importance of associated microbes. Arguably, the emergence of this holistic viewpoint may never have occurred without the development of a crucial molecular technique, 16S rDNA amplicon sequencing, which allowed microbial communities to be easily profiled across a broad range of contexts. A diverse array of molecular techniques are now used to profile microbial communities, infer their evolutionary histories, visualise them in host tissues, and measure their molecular activity. In this review, we examine each of these categories of measurement and inference with a focus on the questions they make tractable, and the degree to which their capabilities and limitations shape our view of the holobiont

    Molecular insights into a novel coral model, Heliofungia actiniformis

    No full text
    Chloë used the coral model Heliofungia to investigate important knowledge gaps in coral biology. She developed a technique to isolate the acrosphere, characterised the gut microbiome and compared the microbial and molecular tissue-specific responses in bleached and unbleached specimens. This research has implications for coral biology, our understanding of bleaching mechanisms and how corals recover after stress

    The role and risks of selective adaptation in extreme coral habitats

    No full text
    Abstract The alarming rate of climate change demands new management strategies to protect coral reefs. Environments such as mangrove lagoons, characterized by extreme variations in multiple abiotic factors, are viewed as potential sources of stress-tolerant corals for strategies such as assisted evolution and coral propagation. However, biological trade-offs for adaptation to such extremes are poorly known. Here, we investigate the reef-building coral Porites lutea thriving in both mangrove and reef sites and show that stress-tolerance comes with compromises in genetic and energetic mechanisms and skeletal characteristics. We observe reduced genetic diversity and gene expression variability in mangrove corals, a disadvantage under future harsher selective pressure. We find reduced density, thickness and higher porosity in coral skeletons from mangroves, symptoms of metabolic energy redirection to stress response functions. These findings demonstrate the need for caution when utilizing stress-tolerant corals in human interventions, as current survival in extremes may compromise future competitive fitness

    Molecular techniques and their limitations shape our view of the holobiont

    Full text link
    © 2019 Elsevier GmbH It is now recognised that the biology of almost any organism cannot be fully understood without recognising the existence and potential functional importance of associated microbes. Arguably, the emergence of this holistic viewpoint may never have occurred without the development of a crucial molecular technique, 16S rDNA amplicon sequencing, which allowed microbial communities to be easily profiled across a broad range of contexts. A diverse array of molecular techniques are now used to profile microbial communities, infer their evolutionary histories, visualise them in host tissues, and measure their molecular activity. In this review, we examine each of these categories of measurement and inference with a focus on the questions they make tractable, and the degree to which their capabilities and limitations shape our view of the holobiont
    corecore