201 research outputs found
The marriage market for immigrant families in ChosĹŹn Korea after the Imjin War: women, integration, and cultural capital
Challenging the myth of premodern Korea as ethnically homogenous, this study focuses on immigrant marriages in ChosĹŹn Korea following Japanese invasions (Imjin War, 1592-1598). By examining household registers and genealogies, I investigate the status of women who married into the families of Japanese and Ming Chinese immigrants and the social consequences of such marriages. The results unexpectedly indicate that immigrant families rarely intermarried, preferring integration with local families. As a means of acquiring social and cultural capital, Korean brides from elite families were vital to the success of immigrant families in forming social networks and in producing candidates for the civil service examinations, with failure to obtain such a bride proving a potential long-term obstacle to social advancement. There is a noticeable difference between families of Chinese and Japanese origin in this context due to the preference shown by Korean families for the descendants of Ming generals over Japanese defectors. Contributing to a growing number of studies that question whether the Korean family was fully "Confucianized" in the seventeenth century with a consequent decline in the status of women, this study argues that women possessed social and cultural capital and held particular value for immigrant familie
Exceptional biodiversity of the cryptofaunal decapods in the Chagos Archipelago, central Indian Ocean
The Chagos Archipelago is geographically remote and isolated from most direct anthropogenic pressures. Here, we quantify the abundance and diversity of decapod crustaceans inhabiting dead coral colonies, representing a standardised microhabitat, across the Archipelago. Using morphological and molecular techniques we recorded 1868 decapods from 164 nominal species within 54 dead coral colonies, but total species estimates (Chao1 estimator) calculate at least 217 species. Galatheids were the most dominant taxa, though alpheids and hippolytids were also very abundant. 32% of species were rare, and 46% of species were found at only one atoll. This prevalence of rarer species has been reported in other cryptofauna studies, suggesting these assemblages maybe comprised of low-abundance species. This study provides the first estimate of diversity for reef cryptofauna in Chagos, which will serve as a useful baseline for global comparisons of coral reef biodiversity
Predators reduce extinction risk in noisy metapopulations
Background
Spatial structure across fragmented landscapes can enhance regional population persistence by promoting local “rescue effects.” In small, vulnerable populations, where chance or random events between individuals may have disproportionately large effects on species interactions, such local processes are particularly important. However, existing theory often only describes the dynamics of metapopulations at regional scales, neglecting the role of multispecies population dynamics within habitat patches.
Findings
By coupling analysis across spatial scales we quantified the interaction between local scale population regulation, regional dispersal and noise processes in the dynamics of experimental host-parasitoid metapopulations. We find that increasing community complexity increases negative correlation between local population dynamics. A potential mechanism underpinning this finding was explored using a simple population dynamic model.
Conclusions
Our results suggest a paradox: parasitism, whilst clearly damaging to hosts at the individual level, reduces extinction risk at the population level
Species interactions regulate the collapse of biodiversity and ecosystem function in tropical forest fragments
Competitive interactions among species with similar ecological niches are known to regulate the assembly of biological communities. However, it is not clear whether such forms of competition can predict the collapse of communities and associated shifts in ecosystem function in the face of environmental change. Here, we use phylogenetic and functional trait data to test whether communities of two ecologically important guilds of tropical birds (frugivores and insectivores) are structured by species interactions in a fragmented Amazonian forest landscape. In both guilds, we found that forest patch size, quality, and degree of isolation influence the phylogenetic and functional trait structure of communities, with small, degraded, or isolated forest patches having an increased signature of competition (i.e., phylogenetic and functional trait overdispersion in relation to null models). These results suggest that local extinctions in the context of fragmentation are nonrandom, with a consistent bias toward more densely occupied regions of niche space. We conclude that the loss of biodiversity in fragmented landscapes is mediated by niche-based competitive interactions among species, with potentially far-reaching implications for key ecosystem processes, including seed dispersal and plant damage by phytophagous insects
Combining the high-dose/refuge strategy and self-limiting transgenic insects in resistance management - a test in experimental mesocosms
This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.The high-dose/refuge strategy has been the primary approach for resistance management in transgenic crops engineered with Bacillus thuringiensis toxins. However, there are continuing pressures from growers to reduce the size of Bt toxin-free refugia, which typically suffer higher damage from pests. One complementary approach is to release male transgenic insects with a female-specific self-limiting gene. This technology can reduce population sizes and slow the evolution of resistance by introgressing susceptible genes through males. Theory predicts that it could be used to facilitate smaller refugia or reverse the evolution of resistance. In this study, we used experimental evolution with caged insect populations to investigate the compatibility of the self-limiting system and the high-dose/refuge strategy in mitigating the evolution of resistance in diamondback moth, Plutella xylostella. The benefits of the self-limiting system were clearer at smaller refuge size, particularly when refugia were inadequate to prevent the evolution of resistance. We found that transgenic males in caged mesocosms could suppress population size and delay resistance development with 10% refugia and 4% - 15% initial resistance allele frequency. Fitness costs in hemizygous transgenic insects are particularly important for introgressing susceptible alleles into target populations. Fitness costs of the self-limiting gene in this study (P. xylostella OX4139 line L) were incompletely dominant, and reduced fecundity and male mating competitiveness. The experimental evolution approach used here illustrates some of the benefits and pitfalls of combining mass-release of self-limiting insects and the high dose/refuge strategy, but does indicate that they can be complementary.This work was supported by the Biotechnology and Biological Sciences Research Council [grant numbers BB/L00948X/1 to MBB and NA, and BB/L00819X/1&2 to BR]
Applications of time-series analysis to mood fluctuations in bipolar disorder to promote treatment innovation: a case series.
Treatment innovation for bipolar disorder has been hampered by a lack of techniques to capture a hallmark symptom: ongoing mood instability. Mood swings persist during remission from acute mood episodes and impair daily functioning. The last significant treatment advance remains Lithium (in the 1970s), which aids only the minority of patients. There is no accepted way to establish proof of concept for a new mood-stabilizing treatment. We suggest that combining insights from mood measurement with applied mathematics may provide a step change: repeated daily mood measurement (depression) over a short time frame (1 month) can create individual bipolar mood instability profiles. A time-series approach allows comparison of mood instability pre- and post-treatment. We test a new imagery-focused cognitive therapy treatment approach (MAPP; Mood Action Psychology Programme) targeting a driver of mood instability, and apply these measurement methods in a non-concurrent multiple baseline design case series of 14 patients with bipolar disorder. Weekly mood monitoring and treatment target data improved for the whole sample combined. Time-series analyses of daily mood data, sampled remotely (mobile phone/Internet) for 28 days pre- and post-treatment, demonstrated improvements in individuals' mood stability for 11 of 14 patients. Thus the findings offer preliminary support for a new imagery-focused treatment approach. They also indicate a step in treatment innovation without the requirement for trials in illness episodes or relapse prevention. Importantly, daily measurement offers a description of mood instability at the individual patient level in a clinically meaningful time frame. This costly, chronic and disabling mental illness demands innovation in both treatment approaches (whether pharmacological or psychological) and measurement tool: this work indicates that daily measurements can be used to detect improvement in individual mood stability for treatment innovation (MAPP)
Competition-Colonization Trade-Offs, Competitive Uncertainty, and the Evolutionary Assembly of Species
We utilize a standard competition-colonization metapopulation model in order to study the evolutionary assembly of species. Based on earlier work showing how models assuming strict competitive hierarchies will likely lead to runaway evolution and self-extinction for all species, we adopt a continuous competition function that allows for levels of uncertainty in the outcome of competition. We then, by extending the standard patch-dynamic metapopulation model in order to include evolutionary dynamics, allow for the coevolution of species into stable communities composed of species with distinct limiting similarities. Runaway evolution towards stochastic extinction then becomes a limiting case controlled by the level of competitive uncertainty. We demonstrate how intermediate competitive uncertainty maximizes the equilibrium species richness as well as maximizes the adaptive radiation and self-assembly of species under adaptive dynamics with mutations of non-negligible size. By reconciling competition-colonization tradeoff theory with co-evolutionary dynamics, our results reveal the importance of intermediate levels of competitive uncertainty for the evolutionary assembly of species
Stability in Ecosystem Functioning across a Climatic Threshold and Contrasting Forest Regimes
Classical ecological theory predicts that changes in the availability of essential resources such as nitrogen should lead to changes in plant community composition due to differences in species-specific nutrient requirements. What remains unknown, however, is the extent to which climate change will alter the relationship between plant communities and the nitrogen cycle. During intervals of climate change, do changes in nitrogen cycling lead to vegetation change or do changes in community composition alter the nitrogen dynamics? We used long-term ecological data to determine the role of nitrogen availability in changes of forest species composition under a rapidly changing climate during the early Holocene (16k to 8k cal. yrs. BP). A statistical computational analysis of ecological data spanning 8,000 years showed that secondary succession from a coniferous to deciduous forest occurred independently of changes in the nitrogen cycle. As oak replaced pine under a warming climate, nitrogen cycling rates increased. Interestingly, the mechanism by which the species interacted with nitrogen remained stable across this threshold change in climate and in the dominant tree species. This suggests that changes in tree population density over successional time scales are not driven by nitrogen availability. Thus, current models of forest succession that incorporate the effects of available nitrogen may be over-estimating tree population responses to changes in this resource, which may result in biased predictions of future forest dynamics under climate warming
Recommended from our members
How predation and landscape fragmentation affect vole population dynamics
Background: Microtine species in Fennoscandia display a distinct north-south gradient from regular cycles to stable
populations. The gradient has often been attributed to changes in the interactions between microtines and their predators.
Although the spatial structure of the environment is known to influence predator-prey dynamics of a wide range of species,
it has scarcely been considered in relation to the Fennoscandian gradient. Furthermore, the length of microtine breeding
season also displays a north-south gradient. However, little consideration has been given to its role in shaping or generating
population cycles. Because these factors covary along the gradient it is difficult to distinguish their effects experimentally in
the field. The distinction is here attempted using realistic agent-based modelling.
Methodology/Principal Findings: By using a spatially explicit computer simulation model based on behavioural and
ecological data from the field vole (Microtus agrestis), we generated a number of repeated time series of vole densities
whose mean population size and amplitude were measured. Subsequently, these time series were subjected to statistical
autoregressive modelling, to investigate the effects on vole population dynamics of making predators more specialised, of
altering the breeding season, and increasing the level of habitat fragmentation. We found that fragmentation as well as the
presence of specialist predators are necessary for the occurrence of population cycles. Habitat fragmentation and predator
assembly jointly determined cycle length and amplitude. Length of vole breeding season had little impact on the
oscillations.
Significance: There is good agreement between our results and the experimental work from Fennoscandia, but our results
allow distinction of causation that is hard to unravel in field experiments. We hope our results will help understand the
reasons for cycle gradients observed in other areas. Our results clearly demonstrate the importance of landscape
fragmentation for population cycling and we recommend that the degree of fragmentation be more fully considered in
future analyses of vole dynamics
Modeling the clonal heterogeneity of stem cells
Recent experimental studies suggest that tissue stem cell pools are composed of functionally diverse clones. Metapopulation models in ecology concentrate on collections of populations and their role in stabilizing coexistence and maintaining selected genetic or epigenetic variation. Such models are characterized by expansion and extinction of spatially distributed populations. We develop a mathematical framework derived from the multispecies metapopulation model of Tilman et al (1994) to study the dynamics of heterogeneous stem cell metapopulations. In addition to normal stem cells, the model can be applied to cancer cell populations and their response to treatment. In our model disturbances may lead to expansion or contraction of cells with distinct properties, reflecting proliferation, apoptosis, and clonal competition. We first present closed-form expressions for the basic model which defines clonal dynamics in the presence of exogenous global disturbances. We then extend the model to include disturbances which are periodic and which may affect clones differently. Within the model framework, we propose a method to devise an optimal strategy of treatments to regulate expansion, contraction, or mutual maintenance of cells with specific properties
- …