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Abstract	26	

The	high-dose/refuge	strategy	has	been	the	primary	approach	for	resistance	27	

management	in	transgenic	crops	engineered	with	Bacillus	thuringiensis	toxins.		However,	28	

there	are	continuing	pressures	from	growers	to	reduce	the	size	of	Bt	toxin-free	refugia,	29	

which	typically	suffer	higher	damage	from	pests.		One	complementary	approach	is	to	30	

release	male	transgenic	insects	with	a	female-specific	self-limiting	gene.		This	31	

technology	can	reduce	population	sizes	and	slow	the	evolution	of	resistance	by	32	

introgressing	susceptible	genes	through	males.		Theory	predicts	that	it	could	be	used	to	33	

facilitate	smaller	refugia	or	reverse	the	evolution	of	resistance.		In	this	study,	we	used	34	

experimental	evolution	with	caged	insect	populations	to	investigate	the	compatibility	of	35	

the	self-limiting	system	and	the	high-dose/refuge	strategy	in	mitigating	the	evolution	of	36	

resistance	in	diamondback	moth,	Plutella	xylostella.		The	benefits	of	the	self-limiting	37	

system	were	clearer	at	smaller	refuge	size,	particularly	when	refugia	were	inadequate	to	38	

prevent	the	evolution	of	resistance.		We	found	that	transgenic	males	in	caged	39	

mesocosms	could	suppress	population	size	and	delay	resistance	development	with	10%	40	

refugia	and	4%	-	15%	initial	resistance	allele	frequency.		Fitness	costs	in	hemizygous	41	

transgenic	insects	are	particularly	important	for	introgressing	susceptible	alleles	into	42	

target	populations.		Fitness	costs	of	the	self-limiting	gene	in	this	study	(P.	xylostella	43	

OX4139	line	L)	were	incompletely	dominant,	and	reduced	fecundity	and	male	mating	44	

competitiveness.	The	experimental	evolution	approach	used	here	illustrates	some	of	the	45	

benefits	and	pitfalls	of	combining	mass-release	of	self-limiting	insects	and	the	high-46	

dose/refuge	strategy,	but	does	indicate	that	they	can	be	complementary.	47	

	48	

Keywords:	Cry1Ac	toxin,	high-dose/refuge	strategy,	fitness	costs,	resistance	49	

management,	self-limiting	insects	50	
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Introduction	51	

	52	

The	damage	caused	by	invertebrate	pests	accounts	for	10%-15%	of	agricultural	53	

production,	costing	approximately	US$8	billion	in	the	United	States	(Metcalf,	1996),	54	

US$17.7	billion	in	Brazil	(Oliveira,	Auad,	Mendes,	&	Frizzas,	2014)	and	US$359.8	million	55	

in	Australia	(Murray,	Clarke,	&	Ronning,	2013).		One	approach	to	control	pests	and	56	

maintain	sustainable	agricultural	yields	is	through	the	use	of	biopesticides	such	as	57	

Bacillus	thuringiensis	(Bt).		Bt	is	extremely	valuable	in	modern	agriculture.	This	utility	58	

results	from	the	insecticidal	crystal	(Cry)	proteins	that	have	high	specificity	to	particular	59	

insect	groups	and	hence	low	toxicity	to	non-target	organisms	(Schnepf	et	al.,	1998).	The	60	

application	of	these	insecticidal	proteins	through	conventional	spray	formulations	and	61	

in	transgenic	crops	can	provide	effective	pest	management	while	maintaining	agro-62	

ecosystem	biodiversity	(Bravo,	Likitvivatanavong,	Gill,	&	Soberon,	2011).	Nineteen	63	

crops	and	over	60	million	hectares	of	land	have	been	cultivated	with	biotech	crops	64	

expressing	Bt	toxins	(James,	2014).		However,	despite	the	success	of	genetically	65	

modified	(GM)	crops,	a	range	of	pest	species	have	developed	increased	levels	of	66	

resistance	to	Bt	biopesticides	and	to	the	Cry	toxins	expressed	in	GM	crops	(Gassmann,	67	

Petzold-Maxwell,	Keweshan,	&	Dunbar,	2011;	Kruger,	Van	Rensburg,	&	Van	den	Berg,	68	

2011;	Storer,	Kubiszak,	Ed	King,	Thompson,	&	Santos,	2012;	Tabashnik,	Gassmann,	69	

Crowder,	&	Carrière,	2008;	Tabashnik,	Van	Rensburg,	&	Carrière,	2009;	Zhang	et	al.,	70	

2012;	Zhang	et	al.,	2011).		While	current	resistance	management	strategies	have	been	71	

effective	in	a	range	of	species	(Carrière,	Crowder,	&	Tabashnik,	2010)	there	is	still	scope	72	

for	improvement	and	development.		73	

	74	
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The	cornerstone	of	resistance	management	for	GM	crops	is	the	high-dose/refuge	75	

strategy,	an	approach	mandated	in	several	countries.		In	the	high-dose/refuge	strategy,	76	

one	part	of	target	pest	population	is	exposed	to	high	concentrations	(high-doses)	of	77	

toxins	produced	by	Bt	crops,	rendering	resistance	functionally	recessive.		When	the	78	

inheritance	of	resistance	is	recessive,	only	homozygous-resistant	individuals	(RR	79	

genotype)	survive	on	Bt	crops.		Another	proportion	of	the	pest	population	is	maintained	80	

in	nearby	refuges	of	non-Bt	host	plants,	providing	a	reservoir	of	susceptible	alleles	(from	81	

RS	and	SS	genotypes).		If	the	resistance	allele	frequency	is	low,	homozygous-resistant	82	

pests	surviving	on	Bt	crops	will	be	relatively	rare,	while	susceptible	pests	will	be	83	

abundant	and	readily	available	to	mate	with	resistant	individuals.		Progeny	from	such	84	

matings	will	be	heterozygous	for	resistance	alleles	and	phenotypically	susceptible	to	85	

high-dose	Bt	crops,	thereby	hindering	the	evolution	of	resistance.		Theoretical	models	86	

and	empirical	observations	have	shown	that	the	high-dose/refuge	strategy	is	an	87	

effective	approach	to	delay	or	prevent	the	development	of	resistance	when	the	above	88	

conditions	are	met	(Alphey,	Coleman,	Bonsall,	&	Alphey,	2008;	Alstad	&	Andow,	1995;	89	

Caprio,	Faver,	&	Hankins,	2004;	Gould,	1998;	Gryspeirt	&	Gregoire,	2012;	Huang,	Andow,	90	

&	Buschman,	2011;	Hutchison	et	al.,	2010;	Tyutyunov,	Zhadanovskaya,	Bourguet,	&	91	

Arditi,	2008).	92	

	93	

The	high-dose/refuge	strategy	cannot	be	applied	without	regard	to	its	basic	94	

assumptions.		Certain	genetic	and	ecological	conditions	need	to	hold	true	before	it	can	95	

be	used	to	delay	the	evolution	of	resistance.		These	include:	low	initial	resistance	allele	96	

frequency;	effectively	recessive	resistance;	and	efficient	dispersal	to	refugia.		The	latter	97	

condition	includes	both	random	mating	between	the	resistant	and	susceptible	98	

genotypes	as	well	as	random	oviposition	on	Bt	crop	and	in	refugia	(Burd,	Gould,	Bradley,	99	
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Van	Duyn,	&	Moar,	2003;	Frutos,	Rang,	&	Royer,	2008;	Liu	et	al.,	2001;	Tellez-Rodriguez	100	

et	al.,	2014).		Theoretical	models	and	practical	experience	have	shown	that	violation	of	101	

these	assumptions	of	the	high-dose/refuge	strategy	can	lead	to	rapid	evolution	of	102	

resistance	(Alstad	&	Andow,	1995;	Campagne	et	al.,	2016;	Caprio	et	al.,	2004;	Georghiou	103	

&	Taylor,	1977;	Gould,	1998;	Gryspeirt	&	Gregoire,	2012;	Hutchison	et	al.,	2010;	104	

Tyutyunov	et	al.,	2008).		In	addition,	if	growers	fail	to	plant	refugia	then	evolution	of	105	

resistance	to	GM	crops	can	also	be	rapid	(Farias	et	al.,	2014;	Kruger	et	al.,	2011;	106	

Monnerat	et	al.,	2015;	Storer	et	al.,	2010).		Thus,	recent	incidences	of	the	evolution	of	107	

resistance	to	Bt	toxins	in	GM	crops	can	largely	be	traced	to	failure	of	the	basic	108	

assumptions,	i.e.	low	doses	or	non-recessive	resistance	(Gassmann	et	al.,	2011;	Storer	et	109	

al.,	2012)	or	to	the	fact	that	farmers	are	not	adhering	to	the	mandatory	refuge	planting	110	

requirements	(Tabashnik,	Brevault,	&	Carrière,	2013).			111	

	112	

The	high-dose/refuge	strategy	can	be	made	more	resilient	through	a	range	of	113	

approaches.			These	include	the	use	of	multiple	toxins	(‘pyramiding’),	which	further	114	

reduces	the	frequency	of	effective	phenotypic	resistance	(Carrière,	Crickmore,	&	115	

Tabashnik,	2015;	Zhao	et	al.,	2005),	and	through	seed	mixes	or	‘refuge	in	a	bag’	116	

approaches	that	enforce	farmer	compliance	(Yang	et	al.,	2014)	or	manipulation	of	the	117	

fitness	costs	of	resistance	using	natural	enemies	or	alternative	plant	varieties	118	

(Gassmann,	Stock,	Sisterson,	Carrière,	&	Tabashnik,	2008;	Raymond,	Sayyed,	Hails,	&	119	

Wright,	2007;	Raymond,	Wright,	&	Bonsall,	2011).	Alternative	approaches	may	include	120	

the	use	of	transgenic	insects	to	mitigate	resistance	and	to	reduce	pest	population	size	121	

directly.		122	

	123	

Here,	we	will	address	experimentally	whether	the	release	of	transgenic	insects	to	124	
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suppress	insect	population	size	is	compatible	with	the	high-dose/refuge	strategy	and	125	

can	improve	its	resilience.		Recent	advances	in	genetic	engineering	have	enabled	the	126	

development	of	transgenic	insects	carrying	a	repressible	female-specific	lethal	gene	127	

(Thomas,	Donnelly,	Wood,	&	Alphey,	2000).		In	a	strategy	mimicking	sterile	insect	128	

technique	programs,	the	release	of	large	numbers	of	transgenic	males	can	reduce	target	129	

populations,	as	there	will	be	no	viable	offspring	arising	from	mating	of	wild	females	and	130	

transgenic	males	(Alphey,	Bonsall,	&	Alphey,	2009;	Alphey,	Coleman,	Donnelly,	&	Alphey,	131	

2007;	Gentile,	Rund,	&	Madey,	2015;	Thomas	et	al.,	2000).	Since	these	transgenes	are	132	

designed	to	reduce	insect	fitness	and	will	decline	in	frequency	post-release	this	133	

transgenic	approach	has	been	termed	‘self-limiting’	(Gould,	Huang,	Legros,	&	Lloyd,	134	

2008).		In	addition	to	suppressing	pest	population	sizes,	the	mass	release	of	self-limiting	135	

transgenic	males	can	affect	the	genetic	make-up	of	pest	populations	if	lethality	is	136	

targeted	only	at	females,	i.e.	female-specific	self-limiting	transgenes.		For	example,	137	

alleles	conferring	susceptibility	to	insecticides	carried	by	the	transgenic	population	can	138	

be	introgressed	into	the	target	population	through	the	male	line.		Deterministic	models	139	

of	the	mass	release	of	self-limiting	males	show	that	this	technology	can	be	a	valuable	140	

tool	in	slowing	the	evolution	of	resistance	(Alphey	et	al.,	2009;	Alphey	et	al.,	2007).	141	

	142	

Given	the	importance	of	the	high-dose/refuge	strategy	for	managing	the	evolution	of	143	

resistance	in	modern	agriculture,	a	significant	advance	would	be	to	understand	how	144	

best	to	combine	refugia	with	the	use	of	transgenic	insects	bearing	female-specific	self-145	

limiting	genes.		Theoretically,	the	mass	release	of	the	self-limiting	males	could	facilitate	146	

the	planting	of	smaller	refugia	while	still	preventing	the	evolution	of	resistance	(Alphey	147	

et	al.,	2009;	Alphey	et	al.,	2007).		With	increasing	release	ratios	of	the	self-limiting	148	

insects,	the	mass	release	of	the	genetically	engineered	males	could	even	reverse	149	
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resistance	development	(Alphey	et	al.,	2009;	Alphey	et	al.,	2007).		Smaller	refuge	sizes	150	

may	be	particularly	attractive	to	farmers	who	are	reluctant	to	tolerate	large	refugia	or	151	

where	it	is	difficult	to	enforce	compliance.		The	mass	release	of	the	self-limiting	males	152	

could	also	potentially	help	tackle	issues	like	non-random	mating	between	resistant	and	153	

susceptible	individuals	as	a	result	of	different	development	times	and	population	154	

structure	(Cerda	&	Wright,	2004;	Liu,	Tabashnik,	Dennehy,	Patin,	&	Bartlett,	1999).		155	

Local	mass	release	of	the	self-limiting	insects	might	also,	for	example,	eradicate	resistant	156	

populations	before	they	become	widespread.			157	

	158	

Building	on	previous	work	on	the	high-dose/refuge	strategy	and	the	self-limiting	insects,	159	

we	will	investigate	the	interaction	between	the	release	of	self-limiting	transgenic	insects	160	

and	the	high-dose/refuge	strategy	in	mitigating	the	evolution	of	resistance	in	model	161	

experimental	system	using	the	diamondback	moth	(DBM),	Plutella	xylostella.		DBM	is	a	162	

well-known	and	widespread	pest	of	cruciferous	crops.		Globally	it	imposes	management	163	

costs	of	US$1.3	billion	-	US2.3	billion,	and	causes	yield	losses	estimated	at	US$2.7	billion	164	

per	annum	worldwide	(Furlong,	Wright,	&	Dosdall,	2013;	Zalucki	et	al.,	2012).		Control	165	

failure	of	DBM	is	a	major	concern	in	agriculture,	as	this	species	has	developed	resistance	166	

to	almost	every	insecticide	applied	in	the	field	as	well	as	resistance	to	microbial	Bt	167	

sprays	(Sarfraz	&	Keddie,	2005;	Tabashnik,	1994).		Diamondback	moth	is	also	a	well-168	

established	model	for	evaluating	novel	resistance	management	strategies	(Raymond	et	169	

al.,	2007;	Zhao	et	al.,	2005).		Genetic	markers	for	resistance	to	the	Bt	toxin	Cry1Ac	in	our	170	

resistant	line	have	been	well	established	(Baxter	et	al.,	2011)	and	this	protein	can	be	171	

incorporated	into	artificial	diet	at	doses	that	render	resistance	functionally	recessive.	172	

Transgenic	strains	of	DBM	with	female-specific	self-limiting	constructs	have	been	173	

developed	(Jin	et	al.,	2013).		Evidence	of	population	suppression	by	the	DBM	self-174	
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limiting	system	has	been	observed	in	caged	continuous	generation	studies	and	low	175	

numbers	of	released	self-limiting	males	have	been	shown	to	slow	the	evolution	of	176	

resistance	to	Bt	in	transgenic	crucifers	(Harvey-Samuel	et	al.,	2015).			177	

	178	

Using	DBM	populations	with	known	frequencies	of	Cry1Ac-resistance	alleles,	we	tested	179	

the	compatibility	of	self-limiting	DBM	releases	with	the	high-dose/refuge	strategy	in	180	

single-generation	and	multi-generation	experiments.	We	investigated	whether	the	181	

release	of	Cry-susceptible	self-limiting	insects	could	slow	or	reverse	the	evolution	of	182	

resistance	at	a	range	of	refuge	sizes,	release	ratios	and	initial	frequencies	of	resistance.		183	

In	order	to	compare	experimental	results	to	previous	theoretical	and	experimental	work	184	

we	also	characterized	the	fitness	costs	associated	with	transgenic	constructs	and	185	

resistance	alleles	in	our	experimental	set-up.	186	

	187	

Materials	and	methods	188	

	189	

Experimental	conditions	and	insect	populations	190	

All	insect	populations	were	reared	at	25°C	(±1°C)	and	45%	(±5%)	relative	humidity,	191	

with	a	12:12	light/dark	cycle.		The	rearing	procedure	of	DBM	followed	published	192	

protocols	(Martins	et	al.,	2012).		The	construction	of	the	self-limiting	DBM	(OX4319L,	193	

Oxitec	Ltd)	has	also	been	described	(Jin,	Walker,	Fu,	Harvey-Samuel,	Dafa’alla,	Miles,	194	

Marubbi,	Granville,	Humphrey-Jones,	O’Connell,	et	al.,	2013).		In	brief,	the	self-limiting	195	

system	has	also	been	implemented	in	our	Bt-susceptible	line	using	sequences	from	the	196	

self-limiting	gene	derived	from	the	doublesex	(dsx)	gene	of	pink	bollworm	(Jin,	et	al.,	197	

2013).			Sex-alternate	splicing	of	this	dsx	sequence	allows	the	development	of	a	female-198	

specific	lethal	genetic	system	that	is	repressible	by	provision	of	tetracycline,	or	suitable	199	
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analogues,	in	the	larval	feed	(Jin,	et	al.,	2013).		The	OX4319L	moths	are	denoted	as	200	

genotype	LL,	where	“L”	represents	the	OX4319L	construct	insertion	(Jin,	et	al.,	2013)	201	

and	are	all	homozygous-susceptible	to	Cry1Ac	toxin	(genotype	SS).			202	

	203	

Exogenous	B.	thuringiensis	Cry1Ac	was	purified	from	Escherichia	coli	JM109	cells	204	

carrying	the	plasmid	pGem1Ac,	a	gift	of	Dr	Neil	Crickmore	(University	of	Sussex),	205	

following	published	protocols	(Cornforth,	Matthews,	Brown,	&	Raymond,	2015).		The	206	

purified	Cry1Ac	toxin	was	incorporated	into	artificial	diet	(F9221B,	Frontier	207	

Agricultural	Sciences)	to	make	toxin	diet,	at	doses	(0.5	μg	ml–1)	sufficient	to	cause	near-208	

recessive	resistance	(Supplementary	Information:	toxin	bioassays).	Our	resistant	209	

population,	designated	VB-R,	was	constructed	from	a	Cry1Ac-resistant	population	NO-210	

QAGE	(Baxter	et	al.,	2005;	Heckel,	Gahan,	Liu,	&	Tabashnik,	1999)	and	a	susceptible	211	

population	Vero	Beach,	which	is	the	genetic	background	of	the	self-limiting	population	212	

(VB,	Oxitec	Ltd).		The	VB-R	population	was	constructed	by	backcrossing	a	hybrid	213	

population	of	VB	and	NO-QAGE	into	VB,	and	selecting	for	resistance	to	Cry1Ac	for	three	214	

generations.		To	create	a	Cry1Ac-susceptible	population	with	a	similar	genetic	215	

background,	we	reared	VB-R	without	toxin	selection	for	five	generations	(before	216	

resistance	became	fixed);	thereafter	we	genotyped	mated	pairs	of	males	and	females	217	

using	the	length	polymorphism	marker	for	Cry1Ac	resistance	(Baxter	et	al.,	2011).		Our	218	

susceptible	population	VB-S	was	then	established	using	20	pairs	of	homozygous-219	

susceptible	individuals.		PCR	conditions	for	genotyping	homozygous	susceptible	alleles	220	

were	5	min	at	95°C,	30	×	(30	s	at	94°C,	30	s	at	63°C,	1	min	at	72°C),	10	min	at	72°C,	using	221	

primers	abcc2F	(5’–GGACGTGATCCCGGTGGGCAGCG–3’)	and	abcc2R	(5’–222	

CGTGCGGCAGCTTAGTGTAC–3’).		Both	the	VB-R	and	VB-S	populations	were	non-223	
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transgenic	(ww	genotype,	where	"w"	represents	wild	type	or	absence	of	the	“L”	224	

construct).	225	

	226	

Single	and	multiple	generations,	with	the	same	basic	design,	investigated	the	impact	of	227	

transgenic	male	release	on	the	evolution	of	resistance	to	Bt	toxins	(Table	1,	details	228	

below).		Homozygous	susceptible	LL	male	pupae	were	introduced	into	resistant	229	

populations	with	confirmed	resistance	allele	frequencies.		Following	LL	male	releases,	230	

resistant	populations	were	exposed	to	toxin	selection	and	refuge	treatment.		Population	231	

size	(number	of	pupae)	and	resistant	frequencies	were	monitored	throughout	the	232	

experiments.				233	

	234	

Single-generation	experiment	235	

These	experiments	assessed	the	effect	of	the	susceptible	self-limiting	DBM	in	resistance	236	

management	at	a	range	of	refuge	sizes.		We	hypothesized	that	the	use	of	susceptible	self-237	

limiting	DBM	will	have	a	greater	effect	on	slowing	the	evolution	of	resistance	at	smaller	238	

refuge	sizes.		The	single	generation	experiments	were	timed	so	that	wild	type	adults	and	239	

transgenic	males	would	emerge	from	their	pupae	over	the	same	period	(24-48	hours)	240	

and	compete	for	mates	in	experimental	cages.			The	eggs	produced	within	each	replicate	241	

cage	were	allocated	to	Cry1Ac	toxin	diet	or	toxin	refugia	where	larvae	experienced	242	

selection	for	resistance.		These	experiments	sought	to	control	for	any	differences	in	243	

development	time	between	wildtype	and	transgenic	insects	(and	between	Cry1Ac	244	

resistant	and	susceptible	insects)	but	otherwise	allowed	genetic	background	to	affect	245	

mating	behaviour.		246	

	247	
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Experiments	were	set	up	with	200	individuals	of	the	wild	type	population	with	a	15%	248	

resistance	allele	frequency	(R).		The	population	was	reared	for	at	least	two	generations	249	

prior	to	selection	starting	and	frequencies	were	confirmed	with	PCR,	using	methods	250	

described	above.		In	the	transgenic	LL	male	release	treatment,	200	LL	male	pupae	were	251	

added	to	each	replicate,	so	that	the	release	ratio	was	2:1	OX4319L	males	to	wild	type	252	

non-transgenic	males.		Here,	we	crossed	a	refuge	size	treatment	(10%	and	20%	Cry1Ac	253	

toxin-free	refugia)	with	a	transgenic	treatment	(with	and	without	LL	male	release),	each	254	

replicated	three	times	(Table	1).		Refugia	were	based	on	the	percentage	of	egg	255	

population:	refugia	eggs	were	reared	separately	on	toxin-free	diet,	while	remaining	eggs	256	

were	reared	on	toxin	diet	(0.5	μg	ml–1)	to	pupation.	For	every	replicate,	pupae	survivors	257	

from	both	the	selection	diet	and	refuge	diet	were	collected	and	pooled	for	bioassays	in	258	

the	following	generation	(N	=	90	larvae	and	three	Cry1Ac	doses	including	0.131	μg	ml–1,	259	

0.262	μg	ml–1	and	0.524	μg	ml–1)	in	order	to	assess	for	differences	in	resistance	to	260	

Cry1Ac.	261	

	262	

Three-generation	experiments	263	

To	investigate	the	value	of	the	self-limiting	DBM	in	resistance	management	over	264	

multiple	generations,	we	designed	two	multi-generation	selection	experiments	with	265	

weekly	releases	of	LL	males	(Table	1).		Populations	with	4%	and	15%	resistance	allele	266	

initial	frequencies	were	generated	as	above.		After	confirming	the	resistant	frequency	267	

with	PCR,	we	started	the	first	experiment	(15%	resistance	allele	frequency)	with	two	268	

treatments	(with	and	without	LL	male	release)	and	four	replicates	(400	pupae)	in	each	269	

treatment.		In	the	release	treatment,	male	pupae	were	introduced	into	the	experimental	270	

populations	twice	a	week	at	approximately	a	6:1	ratio	(LL	male	to	pupal	survivors	from	271	

each	cage,	assuming	1:1	sex	ratio	in	cage	survivors)	for	12	weeks.			272	
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	273	

Eggs	were	collected	every	two	days	with	10%	of	the	eggs	placed	onto	toxin-free	refuge	274	

diet.		The	diet	infestation	was	staggered	every	two	days	to	build	gradually	a	continuous	275	

population	with	overlapping	generations.		Thus	genotype	differences	in	development	276	

time	or	mating	success	are	allowed	to	influence	results,	adding	more	realism	than	in	277	

single	generation	experiments.	278	

	279	

The	experimental	populations	were	bio-assayed	every	generation	to	measure	the	280	

proportion	of	homozygous-resistant	(RR)	individuals	in	the	population.		Survival	data	–	281	

the	numbers	of	pupae	surviving	the	selection	diet	and	refuge	diet	–	were	collected	282	

weekly.		To	test	whether	the	release	of	transgenic	insects	was	capable	of	reversion,	i.e.	283	

decreasing	the	resistance	allele	frequency	in	the	face	of	selection,	the	experiment	was	284	

repeated	with	another	population	with	initial	resistance	allele	frequency	at	4%.	285	

	286	

Life	history	and	fitness	cost	experiments	287	

To	evaluate	the	fitness	costs	of	the	self-limiting	gene	and	the	resistance	allele,	we	288	

measured	life	history	traits	and	mating	competitiveness	of	the	aforementioned	P.	289	

xylostella	populations.		All	males	denoted	as	LL	and	Lw	were	homozygous-susceptible	at	290	

the	resistance	locus	(SS),	and	all	VB-S	and	VB-R	individuals	were	non-transgenic	(ww).		291	

We	confirmed	that	the	VB-R	population	used	in	this	experiment	was	fixed	for	resistance	292	

by	PCR	screening	of	96	individuals.		Single-pair	mating	of	LL	male	×	SS	female,	VB-S	293	

individuals	(SS),	VB-R	individuals	(RR)	and	SS	×	RR	genotype	were	set	up	to	measure	294	

fecundity,	egg	hatch	rate	and	larval	survival	until	pupation.		Single	pairs	were	mated	in	295	

106	pots.		The	number	of	eggs	laid	on	cabbage	juice-infused	green	cloths	(3	cm	×	3	cm)	296	

from	the	single-pairs	was	counted	manually	for	all	pots,	and	eggs	allowed	to	hatch	in	situ	297	
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(Raymond	et	al.,	2007).		Twenty	freshly	emerged	neonates	from	each	mating	pot	were	298	

randomly	selected	to	grow	on	artificial	diet	until	pupation.		After	scoring	survival,	pupae	299	

developed	from	single-pair	pots	were	used	in	mate	competition	experiments.		In	these	300	

experiments	10	non-transgenic	SS	males	competed	with	the	same	number	of	LL	males,	301	

RR	males,	or	hemizygous	susceptible	OX4319L	males	(LwSS)	for	mating	with	10	SS	302	

females.		LL	males	were	also	competed	with	hemizygous	Lw	males	for	mating	with	SS	303	

females.		As	the	self-limiting	gene	contains	a	dominant	heritable,	fluorescent	DsRed2	304	

protein	marker	(Jin,	et	al.,	2013),	pupae	can	be	sorted	using	a	binocular	microscope	with	305	

NightseaTM		light	source	(excitation	510-540nm)	and	600nm		filter.		Mating	success	of	306	

either	LL	or	Lw	males	in	competition	with	SS	males	was	scored	based	on	the	proportion	307	

of	fluorescent	male	offspring.		The	mating	success	of	RR	males	was	calculated	from	the	308	

proportion	of	heterozygous-resistant	progeny	(RS)	using	PCR	genotyping	described	309	

above.		For	Lw	males	in	competition	with	LL	males,	the	proportion	of	non-fluorescent	310	

male	offspring	determined	the	mating	success	of	Lw	males.	311	

	312	

Statistical	analyses	and	experimental	design	313	

To	assess	the	potential	discriminatory	power	of	the	experiments,	we	simulated	discrete	314	

generations	of	DBM	classified	by	sex	and	genotype	(at	L/w	and	S/R	loci),	assuming	a	315	

constant	proportion	of	released	LLSS	males	to	emerging	males	(initial	males	or,	after	the	316	

first	generation,	emerging	males	of	any	genotype)	and	random	mating.		Where	known,	317	

parameter	values	were	set	to	match	experimental	protocols.		These	simulations	were	318	

adapted	from	a	previously	published	discrete-generation	deterministic	model	of	this	319	

genetic	system	in	a	generic	pest	insect	(Alphey	et	al.,	2009;	Alphey	et	al.,	2007)		(see	320	

Supplementary	Information	for	details).	Deterministic	model	results	indicated	that	the	321	

single-generation	experiments	were	expected	to	be	insensitive	to	error	in	allocation	of	322	
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eggs	to	either	toxin	or	refuge	diet.		Deterministic	modelling	showed	that	the	ability	to	323	

discriminate	between	treatments	over	one	or	three	generations	is	inferior	if	resistance	324	

is	more	effective	and/or	if	fitness	costs	of	resistance	are	small.		These	results	informed	325	

and	refined	the	experimental	design.	326	

	327	

Statistical	analysis	was	carried	out	in	R	(http://www.r-project.com)	using	analysis	of	328	

variance	and	generalized	linear	modelling.		The	numbers	of	pupal	survivors	from	329	

selection	diet	and	refuge	diet	in	the	single-generation	experiment	were	analysed	with	a	330	

generalized	linear	model	with	Poisson	errors.	Survival	data	was	analysed	using	a	331	

generalized	linear	mixed	model	(GLMM)	with	Poisson	errors	(Venables	&	Ripley,	2002);		332	

proportional	data	were	analysed	with	GLMMs		with	binomial	errors,		mixed	model	333	

analyses	used	replicate	as	a	random	effect	and	nested	generation,	week	and	bioassay	334	

dose	within	replicate.		Mating	success	was	analysed	with	a	Chi-squared	goodness	of	fit	335	

tests,	which	compared	the	expected	frequency	of	L	and	R	alleles	under	random	mating	336	

with	observed	frequencies.		All	model	assumptions	were	checked	with	graphical	337	

analysis	of	error	distribution	assumptions.		338	

		339	

Results	340	

Single-generation	experiment	341	

We	predicted	that	larger	refuge	sizes	and	the	addition	of	transgenic	males	would	slow	342	

the	evolution	of	resistance.		However,	given	the	increased	population	size	associated	343	

with	larger	refugia,	we	anticipated	that	the	release	of	transgenic	insects	would	have	344	

more	impact	at	smaller	refuge	sizes.		After	one	discrete	generation,	at	10%	refuge	size,	345	

one	replicate	in	the	release	treatment	had	only	5	pupal	survivors.		The	replicate	went	346	

extinct	in	the	following	generation	and	was	excluded	from	bioassays,	but	was	included	347	
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in	the	population	size	analysis.		As	predicted,	the	larger	refuge	size	(20%)	led	to	a	lower	348	

frequency	of	phenotypic	resistance,	i.e.	frequency	of	RR	genotype	inferred	from	bioassay	349	

results,	compared	to	replicates	with	10%	refuge	size	(Fig.	1A,	Likelihood	ratio	test	=	350	

10.04,	P	=	0.0015).		At	10%	refuge	size,	the	addition	of	transgenic	males	also	lowered	351	

the	proportion	of	phenotypic	resistance	compared	to	replicates	without	LL	male	release	352	

treatment	(Fig.	1A,	Likelihood	ratio	test	=	8.10,	P	=	0.0044).		However,	at	20%	refuge	353	

size,	there	was	no	significant	difference	between	the	release	and	non-release	treatments	354	

(Fig.	1A,	Likelihood	ratio	test	=	0.34,	P	=	0.56).	355	

	356	

The	release	of	transgenic	males	was	also	expected	to	suppress	population	size	by	killing	357	

female	progeny	(Alphey	et	al.,	2009;	Alphey	et	al.,	2007).		We	define	total	survivors	as	358	

the	number	of	surviving	pupae	pooled	from	Cry1Ac-containing	diet	and	refuge	diet	359	

across	replicates.		Given	an	initial	R	allele	frequency	of	15%,	after	one	discrete	360	

generation,	neither	refuge	size	(F1,10	=	0.025,	P	=	0.88)	or	the	release	of	transgenic	males	361	

(F1,9	=	0.0008,	P	=	0.98)	had	an	impact	on	the	total	survivors	(Fig.	1B).	362	

	363	

The	single	generation	design	is	less	realistic	and	has	less	power	than	the	multiple	364	

generation	experiment	below.		In	addition	to	controlling	for	differences	in	development	365	

time,	self-limiting	alleles	cannot	build	up	over	time	in	the	targeted	populations.		366	

However,	these	experiments	were	informative	in	terms	of	illustrating	the	parameter	367	

values	(resistance	frequency,	refuge	size,	release	ratios)	over	which	we	might	see	effects	368	

of	transgenic	insects	on	evolution	of	resistance.	369	

	370	

	371	

	372	
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Three-generation	experiments	373	

While	the	single-generation	experiment	showed	an	effect	on	resistance	frequency	at	374	

lower	refuge	size,	it	was	weaker	than	that	predicted	by	theory.		Here	we	hypothesized	375	

that	a	higher	release	ratio	of	transgenic	males	in	a	continuous	generation	experiment	376	

should	produce	a	more	robust	impact	on	both	population	size	and	resistance	frequency	377	

since	transgene	frequencies	are	expected	to	increase	over	time	in	target	populations	378	

under	continuous	release.		In	the	first	multi-generation	experiment,	initial	conditions	379	

were:	initial	resistance	allele	frequency	of	15%,	and	a	10%	refuge	size,	and	a	release	380	

ratio	of	6:1	transgenic:	wild-type	males.			Under	these	conditions,	the	release	of	381	

transgenic	males	significantly	reduced	phenotypic	resistance	compared	to	controls	382	

without	release	(Fig.	2A,	treatment	*	generation	interaction,	Likelihood	ratio	test	=	383	

11.94,	P	<	0.001;	treatment	*	generation2	interaction,	Likelihood	ratio	test	=	3.99,	P	=	384	

0.046).		Model	comparison	showed	that	a	GLMM	model	with	quadratic	interaction	385	

between	treatment	and	week	(AIC	=	359.07)	had	greater	explanatory	power	than	a	386	

model	with	a	linear	interaction	(AIC	=	442.74)	(Chi-squared	test	=	89.67,	df	=	3,	P	<<<	387	

0.001).	388	

	389	

In	addition	to	phenotypic	resistance	reduction,	we	also	observed	population	size	390	

suppression	(Fig.	2B,	treatment	*	week	interaction,	Likelihood	ratio	test	=	6.28,	P	=	391	

0.012;	treatment	*	week2	interaction,	Likelihood	ratio	test	=	6.19,	P	=	0.013).		Model	392	

comparison	showed	that	the	effects	of	time	were	non-linear;	adding	week	as	a	quadratic	393	

term	improved	model	fitting	(treatment*week2	interaction,	AIC	=	355.09,	Chi-squared	394	

test	=	42.61,	df	=	3,	P	<<<	0.001)	relative	to	a	simple	linear	analysis	(AIC	=	385.62).			395	

Note	that	larval	populations	on	toxins	and	refugia	diets	crashed	in	week	10,	due	to	396	

undiagnosed	issues	in	the	insectary;	populations	rebounded	in	week	11	since	adults	and	397	
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eggs	in	each	replicate	were	unaffected	by	this	additional	mortality.		We	also	estimated	398	

the	selective	advantage	of	resistance	in	experiments	from	the	proportion	of	insects	that	399	

survived	on	Cry1Ac-containing	diet	relative	to	total	pupal	survivors.		If	there	is	no	400	

effective	resistance	then	this	value	should	be	0;	while	if	resistance	is	at	fixation	this	401	

value	should	be	equal	to	(1-	refuge	size),	or	0.9	with	a	10%	refuge.	Over	the	course	of	402	

the	experiment,	the	proportion	of	Cry1Ac	survivors	increased	in	both	released	403	

populations	and	controls	(Fig.	2C,	Likelihood	ratio	test	=	4.06,	P	=	0.044).		We	also	404	

observed	an	increase	of	Cry1Ac	survivors	at	first	and	later	(after	week	10)	a	decrease	of	405	

Cry1Ac	survivors	in	populations	treated	with	transgenic	males	(Fig.	2C,	treatment	*	406	

week	interaction,	Likelihood	ratio	test	=	33.49,	P	<<<	0.001;	treatment	*	week2	407	

interaction,	Likelihood	ratio	test	=	31.85,	P	<<<	0.001).		A	quadratic	interaction	between	408	

treatment	and	week	(AIC	=	645.24)	had	greater	explanatory	power	than	a	linear	409	

interaction	(AIC	=	678.39)	(Chi-square	test	=	37.15,	df	=	2,	P	<<<	0.001).			410	

	411	

Following	the	success	of	the	first	experiment,	we	tested	whether	we	could	drive	412	

reversion	(decrease	in	frequency)	of	resistance	in	populations	initiated	with	4%	R	allele	413	

frequency.		In	this	experiment,	population	sizes	across	all	treatments	and	replicates	414	

(5~158	pupae)	were	lower	than	in	the	experiment	with	15%	initial	R	allele	frequency	415	

(115~1516	pupae),	a	consequence	of	the	lower	mean	reproductive	ability	associated	416	

with	reduced	phenotypic	resistance.		Particularly	after	two	generations,	all	four	417	

replicates	with	weekly	release	of	LL	males	had	zero	survivors	from	Cry1Ac	diet	and	a	418	

very	low	number	of	survivors	from	refuge	diet	(5~72	pupae).		Nevertheless,	we	found	419	

support	for	reduction	of	population	sizes	and	frequency	of	resistance	alleles	in	420	

treatments	with	release	of	transgenic	males.			421	

	422	
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The	release	of	transgenic	males	reduced	population	size	by	generation	2	(Fig.	3A,	423	

treatment	*	generation	interaction,	Likelihood	ratio	test	=	65.51,	P	<<<0.001).	The	424	

release	of	transgenic	males	also	significantly	reduced	the	proportion	of	the	population	425	

surviving	on	Cry1Ac	over	the	course	of	experiment	(Fig.	3B,	Likelihood	ration	test	=	426	

10.66,	P	=	0.0011).		Notably,	by	generation	2,	no	insects	survived	on	Cry1Ac	diet	in	the	427	

transgenic	release	treatment.		After	the	second	generation	of	LL	male	release,	428	

population	replicates	did	not	produce	enough	third-instar	larvae	for	bioassays.		As	a	429	

result,	R	allele	frequency	was	confirmed	by	PCR	instead	of	bioassay,	and	the	experiment	430	

was	terminated	at	the	second	generation.		Despite	the	effect	of	the	release	of	LL	males	431	

on	the	Cry1Ac	survivors,	transgenic	insects	did	not	significantly	affect	the	frequency	of	R	432	

alleles	after	selection,	(Fig.	3C,	F1,6	=	0.85,	p	=	0.39);	quite	possibly	because	genetic	433	

drift/bottleneck	effects	in	refugia	confounded	experimental	treatments.	434	

	435	

Life	history	and	fitness	cost	experiments	436	

We	assessed	the	fitness	cost	of	the	self-limiting	gene	and	the	resistance	allele	in	single-437	

pair	crosses	and	mate	competition	experiments.		In	the	single-pair	mating	experiment,	438	

successful	mating	was	defined	as	mating	that	resulted	in	more	than	10	eggs.		Only	eggs	439	

from	successful	matings	were	counted	and	used	to	estimate	fecundity	and	hatch	rate	as	440	

mating	efficiency	was	assessed	in	competition	experiments.		The	genotype	of	mating	441	

partners	had	a	strong	impact	on	fecundity	(Fig.	4A,	F4,	101	=	5.69,	P	<	0.001),	with	highest	442	

fecundity	in	VB-S	individuals	(SS	×	SS)	and	lowest	fecundity	in	VB-R	individuals	(RR	×	443	

RR)	(Fig.	4A).		Single-pairs	of	LL	male	×	SS	female	had	an	intermediate	level	of	egg	444	

production.		From	the	counted	eggs,	we	estimated	egg	hatch	rate	as	the	percentage	of	445	

successfully	mated	single-pairs	that	had	eggs	developed	into	more	than	10	neonate	446	

larvae.		As	the	self-limiting	construct	eliminates	female	progeny	at	larval	stage	(Jin,	et	al.,	447	
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2013),	we	would	expect	that	the	rate	of	egg	hatch	would	be	similar	to	that	of	wild	type	448	

insects.		However,	the	egg	hatch	rate	in	LL	male	x	SS	female	mating	was	significantly	449	

lower	than	wild	type	pairs	(Fig.	4B,	χ2	=	6.88,	df	=	1,	P	=	0.01).		Single-pairs	of	LL	male	×	450	

SS	female	had	a	significantly	lower	egg	hatch	rate	than	all	other	mating	genotypes	(Fig.	451	

4B,	F4,	101	=	6.68,	P	<<<	0.001).		Larval	survival	was	defined	as	the	proportion	of	neonate	452	

larvae	that	developed	into	pupae	in	10	days.		There	was	no	significant	difference	in	453	

larval	survival	between	genotypes	(Fig.	4C,	χ2	=	1.303,	df	=	3,	P	=	0.73).	454	

	455	

In	the	mating	competition	experiment,	if	RR	males	and	LL	males	were	equally	as	456	

competitive	as	SS	males	for	mating	with	SS	females,	we	would	expect	half	of	the	457	

offspring	to	be	RS	individuals	(scored	by	PCR)	or	Lw	individuals	(scored	by	red	458	

fluorescence),	respectively.		Contradicting	our	null	hypothesis,	both	RR	males	(Fig.	4D,	459	

χ2	=	16.58,	df	=	1,	P	<	0.001)	and	LL	males	(Fig.	4D	χ2	=	591.14,	df	=	1,	P	<<<	0.001)	had	460	

lower	mating	success	than	expected.		Similarly,	under	random	mating,	with	competition	461	

between	heterozygous	Lw	males	and	SS	males	a	quarter	of	the	male	progeny	should	be	462	

fluorescent	Lw	individuals.		Again,	contradicting	our	null	hypothesis	Lw	males	produced	463	

fewer	progeny	than	expected	(Fig.	4D	χ2	=	7.79,	df	=	1,	P	=	0.0053)	indicating	that	the	464	

fitness	costs	associated	with	the	transgene	are	incompletely	dominant.		Finally,	for	LL	465	

males	in	competition	with	Lw	males	(mating	with	SS	females),	significantly	less	than	75%	466	

of	the	male	progeny	were	fluorescent,	indicating	that	homozygous	LL	males	had	lower	467	

mating	success	than	their	heterozygous	Lw	counterparts	(χ2	=	209.21,	df	=	1,	P	<<<	468	

0.001).		In	a	population	of	mixed	genotypes,	the	hierarchy	of	mating	success	of	males	469	

would	be	wild	type	(ww)>	Lw	>	LL	and	SS	>	RR	(Fig.	4D).	470	

	471	

Discussion	472	
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	473	

Here,	we	have	investigated	the	role	of	transgenic	insect	releases	in	mitigating	levels	of	474	

resistance	and	suppressing	population	growth	in	DBM.	We	found	good	support	for	475	

population	suppression	and	resistance	reduction	with	the	combined	use	of	the	high	476	

dose/refuge	strategy	and	self-limiting	transgenic	DBM	(Alphey	et	al.,	2009;	Alphey	et	al.,	477	

2007).		The	most	straightforward	evidence	was	that	the	transgenic	DBM	males	were	478	

able	to	suppress	both	population	size	and	resistance	development	(Fig.	2).		479	

Here,	we	found	effects	on	the	evolution	of	resistance	in	this	even	though	refuge	size	480	

(10%)	and	the	initial	resistance	allele	frequency	(15%)	in	this	work	were	substantially	481	

smaller	and	higher,	respectively,	than	is	typical	in	the	field	(Tabashnik	et	al.,	2008).		482	

Moreover,	in	comparison	to	conventional	sterile	insect	technique	programs,	which	could	483	

release	typically	10,	or	even	up	to	50	sterile	males	to	one	wild	type	male	(Dyck,	484	

Hendrichs,	&	Robinson,	2005;	Lees,	Gilles,	Hendrichs,	Vreysen,	&	Bourtzis,	2015),	the	485	

release	ratio	of	6:1	of	the	self-limiting	DBM	is	relatively	modest.			486	

	487	

Given	the	success	of	the	self-limiting	DBM,	several	factors	could	potentially	limit	the	488	

effect	of	the	transgenic	males.		Our	data	demonstrated	that	the	release	of	the	self-489	

limiting	males	had	a	greater	impact	on	resistance	frequency	at	smaller	refuge	size	(Fig.	490	

1A).	Potentially,	the	strong	effect	of	refuge	size	on	slowing	the	evolution	of	resistance	491	

can	mask	the	effect	of	the	transgenic	males	at	a	low	release	ratio,	rendering	the	effect	of	492	

release	undetectable	(Fig.	1B).		Put	simply,	if	the	refuge	strategy	is	working	well	to	493	

suppress	the	evolution	of	resistance	then	there	are	limited	gains	to	be	had	from	the	494	

additional	release	of	transgenic	males.		Notably,	while	resistance	frequencies	are	low	the	495	

insect	population	growth	rate	will	be	determined	by	refuge	size	(Teller-Rodriguez	et	al.	496	

2014),	so	larger	refugia	can	also	mask	effects	on	population	suppression.		Simulation	497	
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modelling	indicated	that	very	effective	resistance	(RR	individuals	have	survival	rates	498	

that	approach	100%	on	Cry1Ac	diet	in	these	experiments)	and	low	fitness	costs	of	499	

resistance	could	mask	the	effects	of	self-limiting	transgenes	at	low	release	ratios	500	

(Supplementary	Information:	modelling).		Over	multiple	discrete	generations,	other	501	

forms	of	fitness	costs	such	as	delayed	developmental	time	of	the	self-limiting	males,	502	

could	also	limit	efficacy,	while	continuous,	overlapping	insect	populations	might	be	able	503	

to	accommodate	the	other	potential	fitness	costs	(Supplementary	Information:	504	

modelling).			505	

	506	

Release	of	insects	carrying	female-specific	self-limiting	transgenes	should	allow	the	507	

build-up	of	transgenic	alleles	over	multiple	generations,	and	we	found	clear	evidence	of	508	

population	suppression	and	resistance	reduction	in	continuous,	overlapping	DBM	509	

populations.		Experiments	initiated	with	15%	initial	R	allele	frequency	produced	510	

consistent	results	in	terms	of	population	size	and	proportion	of	resistance	alleles.		In	511	

contrast,	with	initial	resistance	alleles	at	4%,	transgenic	males	reduced	population	size	512	

and	survival	on	toxin	diet	in	experiments	(Fig.	3A	and	Fig.	3B),	but	we	observed	no	513	

difference	in	resistance	development	between	the	release-treatment	and	no-release	514	

populations	(Fig.	3C).		The	combined	use	of	refugia	and	transgenic	release	meant	that	515	

there	was	minimal	survival	on	Cry1Ac	diet,	and	therefore	minimal	selection	for	516	

resistance.		However,	cages	experienced	population	bottlenecks,	particularly	in	517	

replicates	treated	with	transgenic	males.		Population	bottlenecks	can	lead	to	increased	518	

variability	in	allele	frequencies	via	drift	(Hartl	&	Clark,	1997).		The	bottleneck	effect	519	

could	explain	the	marked	variation	in	resistance	allele	frequencies	in	the	release-520	

treatment	populations.	521	

	522	
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Overall,	transgenic	males	release	could	slow	the	evolution	of	resistance	in	repeated	523	

experiments,	albeit	at	a	reduced	rate	than	that	predicted	by	theory	(Alphey	et	al.,	2009;	524	

Alphey	et	al.,	2007).		According	to	the	published	models,	a	lower	release	ratio	was	525	

associated	with	effective	resistance	management	consequences	when	refugia	are	larger	526	

and	R	allele	frequencies	lower	than	in	our	experiments	(Alphey	et	al.,	2009;	Alphey	et	al.,	527	

2007).		At	10%	refuge	size	and	10%	initial	R	allele	frequency,	the	release	ratio	of	1:1	528	

was	capable	of	slowing	resistance	development	(Alphey	et	al.,	2009;	Alphey	et	al.,	2007),	529	

but	in	our	experiment	we	released	five	or	six	transgenic	males	to	every	wild-type	male	530	

to	achieve	similar	effects.		As	a	consequence	we	examined	whether	unforeseen	impacts	531	

of	transgenes	and	resistance	alleles	on	life	history	traits	(not	reflected	in	the	models)	532	

might	explain	this	discrepancy.	533	

	534	

Homozygous-resistant	individuals	had	reduced	fitness	as	a	result	of	lower	fecundity	and	535	

fertility	(Fig.	4A	and	Fig.	4B).		Homozygous-resistant	individual	males	also	had	reduced	536	

mating	success	with	susceptible	females	(Fig.	4D).	In	the	mating	competition	experiment,	537	

the	males	and	females	were	introduced	into	the	mating	cages	as	emerged	adults;	it	is	538	

unlikely	that	the	mating	success	of	tested	males	was	correlated	with	different	539	

development	times	and	population	structure	(Liu	et	al.,	2001).		Male	mating	success	in	540	

the	studied	system	may	be	associated	with	reduced	number	of	matings,	as	seen	in	541	

previous	experiments	with	the	NOQA,	the	DBM	line	that	provided	the	resistance	alleles	542	

for	our	population	(Groeters	et	al.,	1993).		Reduced	fitness	for	RR	individuals	improves	543	

resistance	management	generally	(Carrière	&	Tabashnik,	2001),	but	non-random	mating	544	

could	obstruct	the	effectiveness	of	the	high	dose/refuge	strategy	(Gould,	1998;	545	

Tabashnik	et	al.,	2009).	546	

	547	
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Our	results	showed	that	the	self-limiting	males	were	less	competitive	than	wild	type	548	

males	in	terms	of	accessing	wild	type	females	(Fig.	4D)	and	that	these	matings	resulted	549	

in	fewer	hatched	eggs	relative	to	wild	type	counterparts	(Fig.	4B).		The	fitness	of	the	550	

transgenic	males	was	greatly	reduced,	as	very	few	progeny	were	produced	and	survived	551	

from	the	mating.		In	addition,	heterozygous	transgenic	males,	which	are	responsible	for	552	

introgressing	susceptible	alleles	into	the	population	at	large,	showed	incompletely	553	

dominant	fitness	costs	associated	with	transgenes	(Fig	4D).		If	transgenes	reduce	the	554	

fitness	of	heterozygous	males	then	the	potential	for	introgression	of	pesticide	555	

susceptibility	alleles	will	be	limited	and	the	genetic	consequences	of	release	will	556	

approximate	that	of	“bisex-lethal”	strains	rather	than	female-specific	lethal.		The	process	557	

of	building	up	the	L	allele	frequency	through	releases	over	multiple	generations,	and	its	558	

consequences	for	population	suppression,	will	be	attenuated	by	high	dominant	fitness	559	

costs.		Critically,	the	efficacy	of	self-limiting	transgenic	insects	as	tools	in	resistance	560	

management	(above	and	beyond	their	use	in	population	suppression)	will	be	partly	561	

dependent	on	the	dominance	and	degree	of	fitness	costs	associated	with	transgenes.			562	

	563	

These	fitness	costs	are	higher	than	previously	described	for	this	DBM	strain,	potentially	564	

a	result	of	variation	in	rearing	conditions	between	laboratories	(Jin	et	al,	2013;	Harvey-565	

Samuel	et	al.,	2014),	or	because	of	the	effects	of	differences	in	genetic	background	of	566	

non-transgenic	insects	arising	from	out-crossing	wild	type	lines	with	NO-QAGE	567	

(Raymond	et	al.	2011).		Note	that	transfer	of	P.	xylostella	OX4139	line	L	from	Oxitec	to	568	

laboratories	at	Cornell	also	resulted	in	increased	fitness	costs	(A.	Walker,	unpubl.	dat.),	569	

which	were	partly	ameliorated	reducing	the	temperature	under	which	larvae	are	reared.		570	

We	also	saw	weaker	population	suppression	insects	than	in	earlier	experiments	with	571	

self-limiting	P.	xylostella	on	broccoli	plants	(Brassica	oleracea)	expressing	Cry1Ac	572	
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(Harvey-Samuel	et	al,	2015).		In	contrast	to	that	study	we	introduced	toxin-free	refugia,	573	

which	can	substantially	increase	the	reproductive	potential	of	a	population	when	574	

resistance	frequencies	are	low.		In	addition,	in	this	study	experiments	used	artificial	diet,	575	

which	imposes	minimal	mortality	on	early	instars,	whereas	B.	oleracea	can	cause	576	

substantial	mortality	on	neonates,	rising	to	70%	for	genotypes	resistant	to	Cry	toxins	577	

(Raymond	et	al.	2011).		Both	these	factors	would	facilitate	population	suppression	on	578	

broccoli	plants.	579	

	580	

It	is	difficult	to	assess	how	relevant	experiments	conducted	in	caged	insect	population	581	

are	for	real-world	resistance	dynamics.			We	hope	that	mate	competition	experiments	in	582	

the	laboratory	capture	sufficient	naturalistic	behavior	to	be	able	to	reflect	what	might	583	

happen	in	the	field.			The	effects	of	relatively	small	population	sizes	can	clearly	impose	584	

some	limitations	and	create	additional	variability	when	gene	frequencies	are	low.		585	

Nevertheless,	we	have	constructed	experimental	conditions	that	pose	a	very	challenging	586	

scenario	for	resistance	management.		Frequencies	of	resistance	alleles	were	high,	587	

refugia	sizes	were	small	and	the	release	ratios	low	(Dyck	et	al.	2015).		For	diamondback	588	

moth	on	artificial	diet	the	fitness	costs	of	resistance	were	relatively	modest	and	resistant	589	

insects	had	survival	rates	of	up	to	100%	on	diet	containing	very	high	levels	of	Cry	toxins,	590	

a	situation	that	does	not	occur	in	the	field,	even	in	insect	species	prone	to	evolve	591	

resistance	to	Bt	toxins	readily	(Teller-Rodriguez	et	al	2014).		In	addition,	while	fitness	592	

costs	of	transgenes	in	terms	of	mate	competitiveness	were	higher	than	in	previous	593	

experiments	with	P.	xylostella	(estimated	at	0.09	in	this	study,	where	equal	fitness	with	594	

wild	type	=	1),	they	are	lower	than	those	observed	for	other	species	such	as	Aedes	595	

aegypti		(0.008-0.31)	(Carvalo,	McKerney,	Garziera,	Lacroix,	Donnelly,	Alphey,	Malavasi,	596	

Capurro,	2015)	suggesting	that	our	experiments	are	not	unrealistic.		Thus,	even	under	597	
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relatively	stringent	experimental	conditions	our	results	suggest	that	the	self-limiting	598	

DBM	is	a	promising,	compatible	strategy	with	the	high-dose/refuge	strategy.	599	
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Table	1.	Overview	of	experimental	designs	817	
	 Release	ratio	

(transgenic	males	
to	wild-type	
males)	

Initial	
resistance	allele	
frequency	

Refuge	
size	

Experiment	
time	

Single-generation	
experiment	 2:1	&	no-release	 15%	 10%	&	

20%	

One	discrete	
generation	
(2	weeks)	

Three-generation	
experiments	 6:1	&	no	release	 15%	&	4%	 10%	 12	weeks	

	 	818	
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	819	

Figure	1	Efficacy	of	release	of	transgenic	self-limiting	insects	in	preventing	evolution	of	820	

resistance	to	Bt	toxin	in	single	generation	experiments.		(A)	Proportion	of	phenotypic	821	

resistance	(in	bioassays)	of	populations	treated	with	no	release	(black	open	triangles,	822	

black	dashed	line)	and	release	of	the	self-limiting	DBM	males	(yellow	solid	circles,	823	

yellow	solid	line)	at	10%	and	20%	refuge	size.			(B)	Mean	total	survivors	(±SE)	of	824	

populations	treated	with	no	release	(grey	bar)	and	release	of	the	self-limiting	DBM	825	

males	(yellow	bar)	at	10%	and	20%	refuge	size.		826	

	827	

Figure	2	Efficacy	of	release	of	transgenic	self-limiting	insects	in	preventing	evolution	of	828	

resistance	to	Bt	toxin	with	continuous	generations	experiments	and	high	(15%)	initial	829	

resistance	allele	frequency	(A)	Proportion	of	phenotypic	resistance	(in	bioassays)	of	830	

populations	treated	without	LL	male	release	(black	open	triangles,	black	dashed	line)	831	

and	with	weekly	LL	male	release	(yellow	solid	circles,	yellow	solid	line)	over	3	832	

generations.		(B)	Total	survivors	and	(C)	Proportion	of	toxin	survivors	(in	cage)	of	833	

populations	treated	with	non-release	(black	open	triangles,	black	dashed	line)	and	with	834	

weekly	LL	male	release	(yellow	solid	circles,	yellow	solid	line)	over	7	weeks’	time	points.		835	

Proportion	of	toxin	survivors	represent	the	ratio	of	homozygous	resistant	survivors	(RR	836	

pupae)	from	Cry1Ac	selection	diet	to	total	pupae	survivors	pooled	from	selection	diet	837	

and	refuge	diet	in	each	cage	population.	Experiments	used	a	10%	refuge	size.	838	

	839	

	840	

Figure	3	Efficacy	of	release	of	transgenic	self-limiting	insects	in	preventing	evolution	of	841	

resistance	to	Bt	toxin	with	continuous	generations	experiments	and	low	(4%)	(A)	Total	842	

survivors	and	(B)	Proportion	of	toxin	survivors	(in	cage)	of	populations	treated	with	843	
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non-release	(black	open	triangles,	black	dashed	line)	and	with	weekly	LL	male	release	844	

(yellow	solid	circles,	yellow	solid	line)	over	2	generations.		Proportion	of	observed	845	

resistant	represent	the	ratio	of	homozygous	resistant	survivors	(RR	pupae)	from	Cry1Ac	846	

selection	diet	to	total	pupae	survivors	pooled	from	selection	diet	and	refuge	diet	in	each	847	

population.		(C)	Resistance	allele	frequency	of	populations	treated	without	LL	male	848	

release	(black	open	triangles)	and	with	weekly	LL	male	release	(yellow	solid	circles)	at	849	

the	second	generation.		Black	solid	circles	and	error	bars	represent	the	mean	resistance	850	

allele	frequency	(±SE)	for	respective	treatments.		Experiments	used	a	10%	refuge	size.	851	

	852	

Figure	4	Fitness	costs	associated	with	self-limiting	transgenes	and	Bt	resistance	alleles	853	

in	P.	xylostella	in	this	study.	(A)	Egg	production	of	successfully	mated	(>	10	eggs)	single	854	

pairs	of	LL	male	×	SS	female,	SS	male	×	SS	female,	RR	male	×	RR	female,	RR	male	×	SS	855	

female	and	SS	male	×	RR	female.		Black	circles	and	error	bars	represent	the	mean	egg	856	

production	(±SE).		(B)	Egg	hatch	rate	(±SE)	(>	10	larvae	emerged)	of	successfully	mated	857	

single	pairs.		(C)	Larvae	survival	of	larvae	genotype	Lw,	SS,	RR	and	RS.		Black	circles	and	858	

error	bars	represent	the	mean	larvae	survival	(±SE)	for	respective	genotypes.		(D)	Mean	859	

mating	success	(±SE)	of	RR	males	(vs	SS	males	–	in	competition	with	SS	males),	LL	males	860	

(vs	SS	males),	Lw	males	(vs	SS	males)	and	LL	males	(vs	Lw	males).		Yellow	bars	and	861	

error	bars	represent	the	mean	observed	mating	success	(±SE),	while	grey	bars	represent	862	

the	expected	mating	success.		All	males	denoted	as	LL	and	Lw	were	homozygous	863	

susceptible	(SS),	and	all	SS	and	RR	individuals	were	non-transgenic	(ww).	864	

	865	

	 	866	
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