5,716 research outputs found

    Comparison of fragment partitions production in peripheral and central collisions

    Get PDF
    Ensembles of single-source events, produced in peripheral and central collisions and correponding respectively to quasi-projectile and quasi-fusion sources, are analyzed. After selections on fragment kinematic properties, excitation energies of the sources are derived using the calorimetric method and the mean behaviour of fragments of the two ensembles are compared. Differences observed in their partitions, especially the charge asymmetry, can be related to collective energy deposited in the systems during the collisions.Comment: 7 pages, 2 figures, presented at the International Workshop on Multifragmentation and Related Topics, Caen France, 4-7th november 2007 (IWM2007

    The ephemeris, orbital decay, and masses of 10 eclipsing HMXBs

    Get PDF
    We take advantage of more than 10 years of monitoring of the eclipsing HMXB systems LMC X-4, Cen X-3, 4U 1700-377, 4U 1538-522, SMC X-1, IGR J18027-2016, Vela X-1, IGR J17252-3616, XTE J1855-026, and OAO 1657-415 with the ASM on-board RXTE and ISGRI on-board INTEGRAL to update their ephemeris. These results are used to refine previous measurements of the orbital period decay of all sources (where available) and provide the first accurate values of the apsidal advance in Vela X-1 and 4U 1538-522. Updated values for the masses of the neutron stars hosted in the ten HMXBs are also provided, as well as the long-term lightcurves folded on the sources best determined orbital parameters. These lightcurves reveal complex eclipse ingresses and egresses, that are understood mostly as being due to the presence of accretion wakes. The results reported in this paper constitute a database to be used for population and evolutionary studies of HMXBs, as well as theoretical modelling of long-term accretion in wind-fed X-ray binaries.Comment: Accepted for publication on A&

    The eclipsing bursting X-ray binary EXO 0748-676 revisited by XMM-Newton

    Get PDF
    The bright eclipsing and bursting low-mass X-ray binary EXO 0748-676 has been observed at several occasions by XMM-Newton during the initial calibration and performance verification (CAL/PV) phase. We present here the results obtained from observations with the EPIC cameras. Apart from several type-I X-ray bursts, the source shows a high degree of variability with the presence of soft flares. The wide energy coverage and high sensitivity of XMM-Newton allows for the first time a detailed description of the spectral variability. The source is found to be the superposition of a central (~2 10^8 cm) Comptonized emission, most probably a corona surrounding the inner edge of an accretion disk, associated with a more extended (~3 10^10 cm) thermal halo at a typical temperature of ~0.6 keV with an indication of non-solar abundances. Most of the variations of the source can be accounted for by a variable absorption affecting only the central comptonized component and reaching up to NH ~1.3 10^23 cm^{-2}. The characteristics of the surrounding halo are found compatible with an irradiated atmosphere of an accretion disc which intercepts the central emission due to the system high inclination.Comment: 6 pages, 4 figures, accepted for publication in A&A Letters, XMM special issu

    Break-up fragments excitation and the freeze-out volume

    Full text link
    We investigate, in microcanonical multifragmentation models, the influence of the amount of energy dissipated in break-up fragments excitation on freeze-out volume determination. Assuming a limiting temperature decreasing with nuclear mass, we obtain for the Xe+Sn at 32 MeV/nucleon reaction [J. D. Frankland et al., Nucl. Phys. A689, 905 (2001); A689, 940 (2001)] a freeze-out volume almost half the one deduced using a constant limiting temperature.Comment: 11 pages, 6 figure

    Effect of the reservoir size on gas adsorption in inhomogeneous porous media

    Get PDF
    We study the influence of the relative size of the reservoir on the adsorption isotherms of a fluid in disordered or inhomogeneous mesoporous solids. We consider both an atomistic model of a fluid in a simple, yet structured pore, whose adsorption isotherms are computed by molecular simulation, and a coarse-grained model for adsorption in a disordered mesoporous material, studied by a density functional approach in a local mean-field approximation. In both cases, the fluid inside the porous solid exchanges matter with a reservoir of gas that is at the same temperature and chemical potential and whose relative size can be varied, and the control parameter is the total number of molecules present in the porous sample and in the reservoir. Varying the relative sizes of the reservoir and the sample may change the shape of the hysteretic isotherms, leading to a "reentrant" behavior compared to the grand-canonical isotherm when the latter displays a jump in density. We relate these phenomena to the organization of the metastable states that are accessible for the adsorbed fluid at a given chemical potential or density.Comment: 16 page
    • 

    corecore