177 research outputs found

    Formation of an Accretion Flow

    Get PDF
    After a star has been tidally disrupted by a black hole, the debris forms an elongated stream. We start by studying the evolution of this gas before its bound part returns to the original stellar pericenter. While the axial motion is entirely ballistic, the transverse directions of the stream are usually thinner due to the confining effects of self-gravity. This basic picture may also be influenced by additional physical effects such as clump formation, hydrogen recombination, magnetic fields and the interaction with the ambient medium. We then examine the fate of this stream when it comes back to the vicinity of the black hole to form an accretion flow. Despite recent progress, the hydrodynamics of this phase remains uncertain due to computational limitations that have so far prevented us from performing a fully self-consistent simulation. Most of the initial energy dissipation appears to be provided by a self-crossing shock that results from an intersection of the stream with itself. The debris evolution during this collision depends on relativistic apsidal precession, expansion of the stream from pericenter, and nodal precession induced by the black hole spin. Although the combined influence of these effects is not fully understood, current works suggest that this interaction is typically too weak to significantly circularize the trajectories, with its main consequence being an expansion of the shocked gas. Global simulations of disc formation performed for simplified initial conditions find that the debris experiences additional collisions that cause its orbits to become more circular until eventually settling into a thick and extended structure. These works suggest that this process completes faster for more relativistic encounters due to the stronger shocks involved. It is instead significantly delayed if weaker shocks take place, allowing the gas to retain large eccentricities during multiple orbits. Radiation produced as the matter gets heated by circularizing shocks may leave the system through photon diffusion and participate in the emerging luminosity. This current picture of accretion flow formation results from recent theoretical works synthesizing the interplay between different aspects of physics. In comparison, early analytical works correctly identified the essential processes involved in disc formation, but had difficulty developing analytic frameworks that accurately combined non-linear hydrodynamical processes with the underlying relativistic dynamics. However, important aspects still remain to be understood at the time of writing, due to numerical challenges and the complexity of this process

    Long-term stream evolution in tidal disruption events

    Get PDF
    A large number of tidal disruption event (TDE) candidates have been observed recently, often differing in their observational features. Two classes appear to stand out: X-ray and optical TDEs, the latter featuring lower effective temperatures and luminosities. These differences can be explained if the radiation detected from the two categories of events originates from different locations. In practice, this location is set by the evolution of the debris stream around the black hole and by the energy dissipation associated with it. In this paper, we build an analytical model for the stream evolution, whose dynamics is determined by both magnetic stresses and shocks. Without magnetic stresses, the stream always circularizes. The ratio of the circularization time-scale to the initial stream period is t(ev)/t(min) = 8.3(M-h/10(6) M-circle dot)(-5/3)ss(-3), where M-h is the black hole mass and ss is the penetration factor. If magnetic stresses are strong, they can lead to the stream ballistic accretion. The boundary between circularization and ballistic accretion corresponds to a critical magnetic stresses efficiency v(A)/v(c) approximate to 10(-1), largely independent of M-h and ss. However, the main effect of magnetic stresses is to accelerate the stream evolution by strengthening self-crossing shocks. Ballistic accretion therefore necessarily occurs on the stream dynamical time-scale. The shock luminosity associated with energy dissipation is sub-Eddington but decays as t(-5/3) only for a slow stream evolution. Finally, we find that the stream thickness rapidly increases if the stream is unable to cool completely efficiently. A likely outcome is its fast evolution into a thick torus, or even an envelope completely surrounding the black hole

    Magnetic field evolution in tidal disruption events

    Get PDF
    When a star gets tidally disrupted by a supermassive black hole, its magnetic field is expected to pervade its debris. In this paper, we study this process via smoothed particle magnetohydrodynamical simulations of the disruption and early debris evolution including the stellar magnetic field. As the gas stretches into a stream, we show that the magnetic field evolution is strongly dependent on its orientation with respect to the stretching direction. In particular, an alignment of the field lines with the direction of stretching induces an increase of the magnetic energy. For disruptions happening well within the tidal radius, the star compression causes the magnetic field strength to sharply increase by an order of magnitude at the time of pericentre passage. If the disruption is partial, we find evidence for a dynamo process occurring inside the surviving core due to the formation of vortices. This causes an amplification of the magnetic field strength by a factor of \u2dc10. However, this value represents a lower limit since it increases with numerical resolution. For an initial field strength of 1 G, the magnetic field never becomes dynamically important. Instead, the disruption of a star with a strong 1 MG magnetic field produces a debris stream within which magnetic pressure becomes similar to gas pressure a few tens of hours after disruption. If the remnant of one or multiple partial disruptions is eventually fully disrupted, its magnetic field could be large enough to magnetically power the relativistic jet detected from Swift J1644+57. Magnetized streams could also be significantly thickened by magnetic pressure when it overcomes the confining effect of self-gravity

    Simulations of Tidal Disruption Events

    Get PDF
    Numerical simulations have historically played a major role in understanding the hydrodynamics of the tidal disruption process. Given the complexity of the geometry of the system, the challenges posed by the problem have indeed stimulated much work on the numerical side. Smoothed Particles Hydrodynamics methods, for example, have seen their very first applications in the context of tidal disruption and still play a major role to this day. Likewise, initial attempts at simulating the evolution of the disrupted star with the so-called affine method have been historically very useful. In this Chapter, we provide an overview of the numerical techniques used in the field and of their limitations, and summarize the work that has been done to simulate numerically the tidal disruption process

    Formation of an Accretion Flow

    Get PDF
    After a star has been tidally disrupted by a black hole, the debris forms an elongated stream. We start by studying the evolution of this gas before its bound part returns to the original stellar pericenter. While the axial motion is entirely ballistic, the transverse directions of the stream are usually thinner due to the confining effects of self-gravity. This basic picture may also be influenced by additional physical effects such as clump formation, hydrogen recombination, magnetic fields and the interaction with the ambient medium. We then examine the fate of this stream when it comes back to the vicinity of the black hole to form an accretion flow. Despite recent progress, the hydrodynamics of this phase remains uncertain due to computational limitations that have so far prevented us from performing a fully self-consistent simulation. Most of the initial energy dissipation appears to be provided by a self-crossing shock that results from an intersection of the stream with itself. The debris evolution during this collision depends on relativistic apsidal precession, expansion of the stream from pericenter, and nodal precession induced by the black hole spin. Although the combined influence of these effects is not fully understood, current works suggest that this interaction is typically too weak to significantly circularize the trajectories, with its main consequence being an expansion of the shocked gas. Global simulations of disc formation performed for simplified initial conditions find that the debris experiences additional collisions that cause its orbits to become more circular until eventually settling into a thick and extended structure. These works suggest that this process completes faster for more relativistic encounters due to the stronger shocks involved. It is instead significantly delayed if weaker shocks take place, allowing the gas to retain large eccentricities during multiple orbits. Radiation produced as the matter gets heated by circularizing shocks may leave the system through photon diffusion and participate in the emerging luminosity. This current picture of accretion flow formation results from recent theoretical works synthesizing the interplay between different aspects of physics. In comparison, early analytical works correctly identified the essential processes involved in disc formation, but had difficulty developing analytic frameworks that accurately combined non-linear hydrodynamical processes with the underlying relativistic dynamics. However, important aspects still remain to be understood at the time of writing, due to numerical challenges and the complexity of this process

    Purification and properties of plant cytochrome b5

    Full text link

    Transient fading X-ray emission detected during the optical rise of a tidal disruption event

    Full text link
    We report on the SRG/eROSITA detection of ultra-soft (kT=47−5+5kT=47^{+5}_{-5} eV) X-ray emission (LX=2.5−0.5+0.6×1043L_{\mathrm{X}}=2.5^{+0.6}_{-0.5} \times 10^{43} erg s−1^{-1}) from the tidal disruption event (TDE) candidate AT 2022dsb ∼\sim14 days before peak optical brightness. As the optical luminosity increases after the eROSITA detection, then the 0.2--2 keV observed flux decays, decreasing by a factor of ∼39\sim 39 over the 19 days after the initial X-ray detection. Multi-epoch optical spectroscopic follow-up observations reveal transient broad Balmer emission lines and a broad He II 4686A emission complex with respect to the pre-outburst spectrum. Despite the early drop in the observed X-ray flux, the He II 4686A complex is still detected for ∼\sim40 days after the optical peak, suggesting the persistence of an obscured, hard ionising source in the system. Three outflow signatures are also detected at early times: i) blueshifted Hα\alpha emission lines in a pre-peak optical spectrum, ii) transient radio emission, and iii) blueshifted Lyα\alpha absorption lines. The joint evolution of this early-time X-ray emission, the He II 4686A complex and these outflow signatures suggests that the X-ray emitting disc (formed promptly in this TDE) is still present after optical peak, but may have been enshrouded by optically thick debris, leading to the X-ray faintness in the months after the disruption. If the observed early-time properties in this TDE are not unique to this system, then other TDEs may also be X-ray bright at early times and become X-ray faint upon being veiled by debris launched shortly after the onset of circularisation.Comment: Submitted to MNRAS on 2023-08-02. 19 pages, 16 figures and 10 table

    Genetically altered AMPA-type glutamate receptor kinetics in interneurons disrupt long-range synchrony of gamma oscillation

    Get PDF
    Gamma oscillations synchronized between distant neuronal populations may be critical for binding together brain regions devoted to common processing tasks. Network modeling predicts that such synchrony depends in part on the fast time course of excitatory postsynaptic potentials (EPSPs) in interneurons, and that even moderate slowing of this time course will disrupt synchrony. We generated mice with slowed interneuron EPSPs by gene targeting, in which the gene encoding the 67-kDa form of glutamic acid decarboxylase (GAD67) was altered to drive expression of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor subunit GluR-B. GluR-B is a determinant of the relatively slow EPSPs in excitatory neurons and is normally expressed at low levels in γ-aminobutyric acid (GABA)ergic interneurons, but at high levels in the GAD-GluR-B mice. In both wild-type and GAD-GluR-B mice, tetanic stimuli evoked gamma oscillations that were indistinguishable in local field potential recordings. Remarkably, however, oscillation synchrony between spatially separated sites was severely disrupted in the mutant, in association with changes in interneuron firing patterns. The congruence between mouse and model suggests that the rapid time course of AMPA receptor-mediated EPSPs in interneurons might serve to allow gamma oscillations to synchronize over distance

    Cis and trans regulatory mechanisms control AP2-mediated B cell receptor endocytosis via select tyrosine-based motifs.

    Get PDF
    Following antigen recognition, B cell receptor (BCR)-mediated endocytosis is the first step of antigen processing and presentation to CD4+ T cells, a crucial component of the initiation and control of the humoral immune response. Despite this, the molecular mechanism of BCR internalization is poorly understood. Recently, studies of activated B cell-like diffuse large B cell lymphoma (ABC DLBCL) have shown that mutations within the BCR subunit CD79b leads to increased BCR surface expression, suggesting that CD79b may control BCR internalization. Adaptor protein 2 (AP2) is the major mediator of receptor endocytosis via clathrin-coated pits. The BCR contains five putative AP2-binding YxxØ motifs, including four that are present within two immunoreceptor tyrosine-based activation motifs (ITAMs). Using a combination of in vitro and in situ approaches, we establish that the sole mediator of AP2-dependent BCR internalization is the membrane proximal ITAM YxxØ motif in CD79b, which is a major target of mutation in ABC DLBCL. In addition, we establish that BCR internalization can be regulated at a minimum of two different levels: regulation of YxxØ AP2 binding in cis by downstream ITAM-embedded DCSM and QTAT regulatory elements and regulation in trans by the partner cytoplasmic domain of the CD79 heterodimer. Beyond establishing the basic rules governing BCR internalization, these results illustrate an underappreciated role for ITAM residues in controlling clathrin-dependent endocytosis and highlight the complex mechanisms that control the activity of AP2 binding motifs in this receptor system

    The Human Nucleolar Protein FTSJ3 Associates with NIP7 and Functions in Pre-rRNA Processing

    Get PDF
    NIP7 is one of the many trans-acting factors required for eukaryotic ribosome biogenesis, which interacts with nascent pre-ribosomal particles and dissociates as they complete maturation and are exported to the cytoplasm. By using conditional knockdown, we have shown previously that yeast Nip7p is required primarily for 60S subunit synthesis while human NIP7 is involved in the biogenesis of 40S subunit. This raised the possibility that human NIP7 interacts with a different set of proteins as compared to the yeast protein. By using the yeast two-hybrid system we identified FTSJ3, a putative ortholog of yeast Spb1p, as a human NIP7-interacting protein. A functional association between NIP7 and FTSJ3 is further supported by colocalization and coimmunoprecipitation analyses. Conditional knockdown revealed that depletion of FTSJ3 affects cell proliferation and causes pre-rRNA processing defects. The major pre-rRNA processing defect involves accumulation of the 34S pre-rRNA encompassing from site A′ to site 2b. Accumulation of this pre-rRNA indicates that processing of sites A0, 1 and 2 are slower in cells depleted of FTSJ3 and implicates FTSJ3 in the pathway leading to 18S rRNA maturation as observed previously for NIP7. The results presented in this work indicate a close functional interaction between NIP7 and FTSJ3 during pre-rRNA processing and show that FTSJ3 participates in ribosome synthesis in human cells
    • …
    corecore