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ABSTRACT

A large number of tidal disruption event (TDE) candidates have been observed re-
cently, often differing in their observational features. Two classes appear to stand out:
X-ray and optical TDEs, the latter featuring lower effective temperatures and lumi-
nosities. These differences can be explained if the radiation detected from the two
categories of events originates from different locations. In practice, this location is set
by the evolution of the debris stream around the black hole and by the energy dissi-
pation associated with it. In this paper, we build an analytical model for the stream
evolution, whose dynamics is determined by both magnetic stresses and shocks. With-
out magnetic stresses, the stream always circularizes. The ratio of the circularization
timescale to the initial stream period is tev/tmin = 8.3(Mh/106M�)−5/3β−3, where
Mh is the black hole mass and β is the penetration factor. If magnetic stresses are
strong, they can lead to the stream ballistic accretion. The boundary between circu-
larization and ballistic accretion corresponds to a critical magnetic stresses efficiency
vA/vc ≈ 10−1, largely independent of Mh and β. However, the main effect of magnetic
stresses is to accelerate the stream evolution by strengthening self-crossing shocks.
Ballistic accretion therefore necessarily occurs on the stream dynamical timescale.
The shock luminosity associated to energy dissipation is sub-Eddington but decays
as t−5/3 only for a slow stream evolution. Finally, we find that the stream thickness
rapidly increases if the stream is unable to cool completely efficiently. A likely outcome
is its fast evolution into a thick torus, or even an envelope completely surrounding the
black hole.
Key words: black hole physics – hydrodynamics – galaxies: nuclei.

1 INTRODUCTION

Two-body encounters between stars surrounding a super-
massive black hole occasionally result in one of these stars
being scattered on a plunging orbit towards the central
object. If this star is brought too close to the black hole, the
strong tidal forces exceed its self-gravity force, leading to
the star’s disruption. About half of the stellar material ends
up being expelled. The remaining fraction stays bound and
returns the black hole as an extended stream of gas (Rees
1988) with a mass fallback rate decaying as t−5/3. This
bound material is expected to be accreted, resulting in a
luminous flare. Such tidal disruption events (TDEs) contain
information on the black hole and stellar properties. While
white dwarf tidal disruptions necessarily involve black holes
with low masses Mh . 105M� (MacLeod et al. 2015), TDEs
involving giant stars are best suited to probe the higher
end of the black hole mass function, with Mh & 108M�
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(MacLeod et al. 2012). However, the latter might be averted
by the dissolution of the debris into the background gaseous
environment through Kelvin-Helmholtz instability, likely
dimming the associated flare (Bonnerot et al. 2016a).
TDEs also represent a unique probe of accretion and
relativistic jets physics. Additionally, they could provide
insight into bulge-scale stellar processes through the rate at
which stars are injected into the tidal sphere to be disrupted.

The number of candidate TDEs is rapidly growing
(see Komossa 2015 for a recent review). Most of the
detected electromagnetic signals peak in the soft X-ray
band (Komossa & Bade 1999; Cappelluti et al. 2009;
Esquej et al. 2008; Maksym et al. 2010; Saxton et al.
2012) and at optical and UV wavelengths (Gezari et al.
2006, 2012; van Velzen et al. 2011; Cenko et al. 2012a;
Arcavi et al. 2014; Holoien et al. 2016). In addition, a
small fraction of candidates shows both optical and X-ray
emission (e.g. ASSASN-14li, Holoien et al. 2016). Finally,
TDEs have been detected in the hard X-ray to γ-ray band
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(Cenko et al. 2012b; Bloom et al. 2011).

The classical picture for the emission mechanism relies
on an efficient circularization of the bound debris as it falls
back to the disruption site (Rees 1988; Phinney 1989). In
this scenario, the emitted signal comes from an accretion
disc that forms rapidly from the debris at ∼ 2Rp, where
Rp denotes the pericentre of the initial stellar orbit. The
argument for rapid disc formation involves self-collision
of the stream debris due to relativistic precession at
pericentre. This picture is able to explain the observed
properties of X-ray TDE candidates, which feature an
effective temperature Teff ≈ 105 K with a luminosity up
to L ≈ 1044 erg s−1. However, it is inconsistent with the
emission detected from optical TDEs, with Teff ≈ 104 K
and L ≈ 1043 erg s−1. This is because the disc emits mostly
in the X-ray, with a small fraction of the radiation escaping
as optical light, typically only . 1041 erg s−1 in terms of
luminosity (Lodato & Rossi 2011, their figure 2).

The puzzling features of optical TDEs have motivated
numerous investigations. Several works argue that optical
photons are emitted from a shell of gas surrounding the
black hole at a distance ∼ 100Rp. This envelope could
reprocess the X-ray emission produced by the accretion
disc, giving rise to the optical signal. This reprocessing
layer is a natural consequence of several mechanisms, such
as winds launched from the outer parts of the accretion
disc (Strubbe & Quataert 2009; Lodato & Rossi 2011;
Miller 2015) and the formation of a quasistatic envelope
from the debris reaching the vicinity of the black hole
(Loeb & Ulmer 1997; Guillochon et al. 2014; Coughlin &
Begelman 2014; Metzger & Stone 2015). As noticed by
Metzger & Stone (2015), the latter possibility is motivated
by recent numerical simulations that find that matter can
be expelled at large distances from the black hole during
the circularization process (Ramirez-Ruiz & Rosswog 2009;
Bonnerot et al. 2016b; Hayasaki et al. 2015; Shiokawa et al.
2015; Sadowski et al. 2015)

Another interesting idea has been put forward by
Piran et al. (2015), although it has been proposed for the
first time by Lodato (2012). They argue that the optical
emission could come from energy dissipation associated
with the circularization process, and be produced by shocks
occurring at distances much larger than Rp. Furthermore,
since the associated luminosity relates to the debris fallback
rate, they argue that it should scale as t−5/3 as found
observationally (e.g. Arcavi et al. 2014). Such outer shocks
are expected for low apsidal precession angles, which was
shown to be true as long as the star only grazes the tidal
sphere (Dai et al. 2015). Owing to the weakness of such
shocks, these authors suggest that the debris could retain
a large eccentricity for a significant number of orbits.
Recently, this picture was claimed to be consistent with
the X-ray and optical emission detected from ASSASN-14li
(Krolik et al. 2016). Nevertheless, the absence of X-ray
emission in most optical TDEs is hard to reconcile with this
picture, since viscous accretion should eventually occur,
leading to the emission of X-ray photons. For this reason,
Svirski et al. (2015) proposed that magnetic stresses are
able to remove enough angular momentum from the debris

to cause its ballistic accretion with no significant emission
in tens of orbital times. In their work, energy loss via shocks
has been omitted. However, they are likely to occur as
the stream self-crosses due to relativistic precession. This
provides an efficient circularization mechanism that could
give rise to X-ray emission. This is all the more true that
the pericentre distance decreases as magnetic stresses act
on the stream, thus strengthening apsidal precession and
the resulting shocks.

In this paper, we present an analytical treatment of the
long-term evolution of the steam of debris under the influ-
ence of both shocks and magnetic stresses. We show that,
even if the stream retains a significant eccentricity after the
first self-crossing, subsequent shocks are likely to further
shrink the orbit. Furthermore, the main impact of magnetic
stresses is found to be the acceleration of the stream evolu-
tion via a strengthening of self-crossing shocks. If efficient
enough, magnetic stresses can also lead to ballistic accretion.
However, this necessarily happens in the very early stages
of the stream evolution. In addition, we demonstrate that a
t−5/3 decay of the shock luminosity light curve is favoured
for a slow stream evolution, favoured for grazing encounters
with black hole masses . 106M�. This decay law is in gen-
eral hard to reconcile with ballistic accretion that occurs on
shorter timescales. Finally, we demonstrate that if the excess
thermal energy injected by shocks is not efficiently radiated
away, the stream rapidly thickens to eventually form a thick
structure.

This paper is organised as follows. In Section 2, the
stream evolution model under the influence of shocks and
magnetic stresses is presented. In Section 3, we investigate
the influence of the different parameters on the stream evo-
lution and derive the observational consequences. In addi-
tion, we investigate the influence of inefficient cooling on the
stream geometry. Finally, Section 4 contains the discussion
of these results and our concluding remarks.

2 STREAM EVOLUTION MODEL

A star is disrupted by a black hole if its orbit crosses the
tidal radius Rt = R?(Mh/M?)1/3, where Mh denotes the
black hole mass, M? and R? being the stellar mass and ra-
dius. Its pericentre can therefore be written as Rp = Rt/β,
where β > 1 is the penetration factor. During the encounter,
the stellar elements experience a spread in orbital energy
∆ε = GMhR?/R

2
t , given by their depth within the black

hole potential well at the moment of disruption (Lodato
et al. 2009; Stone et al. 2013). The debris therefore evolves
to form an eccentric stream of gas, half of which falls back
towards to black hole.

The most bound debris has an energy −∆ε. It reaches
the black hole after tmin = 2πGMh(2∆ε)−3/2 from the time
of disruption, following Kepler’s third law. Due to relativis-
tic apsidal precession, it then continues its revolution around
the black hole on a precessed orbit. This results in a colli-
sion with the part of the stream still infalling. This first
self-crossing leads to shocks that dissipate part of the debris
orbital energy into heat. The resulting stream moves closer
to the black hole, its precise trajectory depending on the
amount of orbital energy removed. As the stream contin-
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Long-term stream evolution in TDEs 3

ues to orbit the black hole, more self-crossing shocks must
happen due to apsidal precession at each pericentre passage.

We therefore model the evolution of the stream as a suc-
cession of Keplerian orbits, starting from that of the most
bound debris. From one orbit to the next, the stream orbital
parameters change according to both shocks and magnetic
stresses, as described in Sections 2.1 and 2.2 respectively.
This is illustrated in Fig. 1 that shows two successive orbits
of the stream, labelled N and N + 1. Knowing the orbital
changes between successive orbits allows to compute by iter-
ations the orbital parameters of any orbit N . This iteration
is performed until the stream reaches its final outcome, de-
fined by the stopping conditions presented in Section 2.4. In
the following, variables corresponding to orbit N are indi-
cated by the subscript “N”.

The initial orbit, corresponding to N = 0, is that of the
most bound debris. It has a pericentre Rp

0 equal to that of
the star Rp and an eccentricity e0 = 1−(2/β)(Mh/M?)−1/3.
Its energy is

ε0 = −∆ε ∝M1/3
h , (1)

while, using e0 ≈ 1, its angular momentum can be approxi-
mated as

j0 ≈
√

2GMhRp ∝M2/3
h β−1/2. (2)

From this initial orbit, the orbital parameters of any orbit N
are computed iteratively. Its energy and angular momentum
are given by

εN = −GMh

2aN
, (3)

jN =
√
GMhaN (1− e2

N ), (4)

respectively as a function of the semi-major axis aN and
eccentricity eN of the stream. The apocentre and pericentre
distances of orbit N are by definition Ra

N = aN (1 + eN ) and
Rp
N = aN (1−eN ) respectively. At these locations, the stream

has velocities va
N = (GMh/aN )1/2((1−eN )/(1+eN ))1/2 and

vp
N = (GMh/aN )1/2((1 + eN )/(1− eN ))1/2.

Our assumption of a thin stream moving on Keplerian
trajectories requires that pressure forces are negligible com-
pared to gravity. This is legitimate as long as the excess
thermal energy produced by shocks is radiated efficiently
away from the gas. The validity of this approximation is the
subject of Section 3.3.

Moreover, our treatment of the stream evolution ne-
glects the dynamical impact of the tail of debris that keeps
falling back long after the first collision. This fact will be
checked a posteriori in Section 3.2. It can already be justi-
fied qualitatively here through the following argument. At
the moment of the first shock, the tail and stream densi-
ties are similar. However, later in the evolution, the tail gets
stretched resulting in a density decrease. On the other hand,
the stream gains mass and moves closer to the black hole
as it loses energy. As a consequence, its density increases.
The tail therefore becomes rapidly much less dense than the
stream, which allows to neglect its dynamical influence on
the stream evolution.

Orbit N+1

vN
out

RN
intϕ  N 2

ψ  N 2

vN
in

Orbit N
vN
sh

vN+1

Figure 1. Sketch illustrating the stream evolution model as a
succession of orbits. Orbit N + 1 follows orbit N after an en-
ergy loss through shocks and an angular momentum loss through
magnetic stresses. The associated velocity changes are depicted
in red and blue respectively. While the stream is on orbit N , it
precesses by an angle φN , given by equation (5). As a result, the
stream self-crosses at the intersection point, indicated by the pur-
ple point. It occurs at a distance Rint

N from the black hole, given
by equation (6), and with a collision angle ψN . The post-shock
velocity vsh

N is obtained from the velocity vin
N and vout

N of the
two colliding components according to equation (7). Immediately
after, the stream undergoes magnetic stresses that reduce this
velocity to vN+1, given by equation (16) and defining the initial
velocity of orbit N + 1.

2.1 Shocks

Apsidal precession causes the first self-crossing shock that
makes the debris produced by the disruption more bound
to the black hole. The subsequent evolution of the stream
is affected by a similar process. When an element of the
stream passes at pericentre, its orbit precesses, causing its
collision with the part of the stream still moving towards
pericentre. Once all the stream matter has passed through
this intersection point, it continues on a new orbit.

Suppose that the stream is on orbit N . To determine
the change of orbital parameters due to shocks as the stream
self-crosses, we use a treatment similar to that used by Dai
et al. (2015) to predict the orbit resulting from the first self-
intersection. This method is also inspired from an earlier
work by Kochanek (1994). It is illustrated in Fig. 1, with
the associated change in velocity shown in red. As orbit N
precesses by an angle1(Hobson et al. 2006, p. 232)

φN = 6πGMh

aN (1− e2
N )c2 , (5)

1 This expression is derived in the small-angle approximation.
This is legitimate since our study mainly focuses on outer shocks,
for which φN remains smaller than about 10 degrees. In the case
of strong shocks, the stream evolution is fast independently on
the precise value of φN .

c© 2014 RAS, MNRAS 000, 1–16



4 Clément Bonnerot, Elena M. Rossi and Giuseppe Lodato

it intersects the remaining part of the stream at a distance
from the black hole

Rint
N = aN (1− e2

N )
1− eN cos(φN/2) . (6)

The angle in the denominator is computed from a reference
direction that connects the pericentre and apocentre of orbit
N . At this point, the infalling and outflowing parts of the
stream collide. Following Dai et al. (2015), we assume this
collision to be completely inelastic. Momentum conservation
then sets the resulting velocity to

vsh
N = vin

N + vout
N

2 , (7)

where vin
N and vout

N denote the velocity of the inflowing and
outflowing components respectively. Equation (7) assumes
that the two components have equal masses. This is justified
since they are part of the same stream. Although this stream
might be inhomogeneous shortly after the first shock, inho-
mogeneities are likely to be suppressed later in its evolution.
Note that conservation of momentum implies conservation
of angular momentum since this velocity change occurs at a
fixed position.

According to equation (7), the post-shock velocity is
given by |vsh

N | = |vN | cos(ψN/2), where ψN is the collision
angle between vin

N and vout
N and |vN | denotes the velocity

at the intersection point, equal to |vin
N | and |vout

N | because
of energy conservation along the Keplerian orbit. Therefore,
the energy removed from the stream during the collision is

∆εN = 1
2v2

N sin2(ψN/2). (8)

Using εN = v2
N/2 − GMh/R

int
N and equation (6) combined

with sin2(ψN/2) = e2
N sin2(φN/2)/(1+e2

N−2eN cos(φN/2)),
this can be rewritten as

∆εN = e2
N

2

(
GMh

jN

)2

sin2(φN/2), (9)

which also makes use of the relation (GMh)2(1 − e2
N ) =

−2j2
N εN . Equation (9) has the advantage of depending only

on the orbital parameters of orbit N . It will be used in Sec-
tion 2.3 to find an equivalent differential equation describing
the stream evolution. In addition, equation (9) implies that
∆εN is largely independent of N when the stream angu-
lar momentum is unchanged, which is the case if magnetic
stresses do not affect its evolution. This is because e2

N varies
only weakly with N while φN only depends on jN as can
be seen by combining equations (4) and (5). The constant
value of ∆εN can then be obtained by evaluating equation
(9) at N = 0. Simplifying by the small angle approximation
sin θ ≈ θ, it is given by

∆ε0 =
(

9π2

16c4

)
e2

0

(
GMh

Rp

)3

∝M2
hβ

3, (10)

using equation (2) and e0 ≈ 1. The fact that ∆εN ≈ ∆ε0
will be used in Section 3.1 to find an analytical expression
for the circularization timescale of the stream in the absence
of magnetic stresses.

2.2 Magnetic stresses

Magnetic stresses act on the stream, leading to angular mo-
mentum transport outwards. To evaluate the orbital change
induced by this mechanism, we follow Svirski et al. (2015).
Consider a stream section covering an azimuthal angle δφ
and located at a distance R = j2/(GMh)/(1+e cos(θ)) from
the black hole, j denoting its specific angular momentum
and θ its true anomaly. This section loses specific angular
momentum at a rate

dj/ dt = (dG/ dR)/(ΣRδφ). (11)

In this expression, G is the rate of angular momentum trans-
port outwards, given by

G =
∫ ∆z

−∆z
RMn̂t̂ |̂r× t̂|Rδφdz, (12)

where ∆z denotes the vertical extent of the stream, n̂ and
t̂ are unit vectors normal and tangential to the stream sec-
tion considered while r̂ is in the radial direction. Mn̂t̂ =
−Bn̂Bt̂/(4π) denotes the n̂-̂t component of the Maxwell ten-
sor, Bn̂ and Bt̂ being the normal and tangential component
of the magnetic field. The term |̂r × t̂| = (1 + e cos θ)/(1 +
e2 + 2e cos θ)1/2 is required since only the component of t̂-
momentum orthogonal to r̂ contributes to the angular mo-
mentum. Combining equations (11) and (12) then leads to
dj
dt = αmag |̂r× t̂|v2

A, (13)

where αmag = −2Bn̂Bt̂/B
2 and v2

A =
∫ ∆z
−∆z B

2 dz/(4πΣ)
is the squared Alfvén velocity. The angular momentum ∆j
lost by the stream section2 in one period is then obtained by
integrating equation (13). Using the chain rule to combine
equation (13) with Kepler’s second law dθ/dt = j/R2 and
integrating over θ, it is found to be

∆j = Ke

(
vA

vc

)2
j, (14)

where

Ke ≡ αmag

∫ 2π

0
fe(θ) dθ, (15)

with fe(θ) ≡ (1 + e2 + 2e cos θ)−1/2 and vc = (GMh/R)1/2

being the circular velocity at R. Equation (14) has been ob-
tained by assuming that αmag and vA/vc are independent
of R. In the following, we set αmag = 0.4, as motivated by
magnetohydrodynamical simulations (Hawley et al. 2011).
The value of vA/vc is varied from 10−2 to 1. This range
of values relies on the assumption that magneto-rotational
instability has fully developed at its fastest rate associ-
ated to its most disruptive mode. The former is reached
for vAk ' vc/R, k being the wavenumber of the instabil-
ity (Balbus & Hawley 1998). The latter corresponds to the
lowest wavenumber available, that is k ' 1/H where H de-
notes the width of the stream. Therefore, vA/vc ' H/R,
which likely varies from 10−2 to 1. It is however possible
that the MRI did not have time to reach saturation in the

2 More precisely, angular momentum is transferred outwards
from the bulk of the stream to a gas parcel of negligible mass.
It is therefore a fair assumption to assume that this angular mo-
mentum is lost.

c© 2014 RAS, MNRAS 000, 1–16
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early stream evolution since it requires about 3 dynamical
times (Stone et al. 1996). This would lead to lower values of
vA/vc. Since fe(π)/fe(0) = (1+e)/(1−e)� 1 for 1−e� 1,
the integrand in equation (15) is the largest for θ ≈ π. As
noticed by Svirski et al. (2015), this means that the angular
momentum loss happens mostly close to apocentre as long
as the eccentricity is large, which is true during the stream
evolution. Instead, if the stream reaches a nearly circular or-
bit, angular momentum is lost roughly uniformly along the
orbit. This argument will be used in Section 2.4 to define
one of the stopping criterion of the iteration.

Since magnetic stresses act mostly at apocentre, we
implement it as an instantaneous angular momentum loss
at this location. The angular momentum removed from
orbit N is then obtained from equation (14) by ∆jN =
Ke(vA/vc)2jN . The post-shock velocity given by equation
(7) has no radial component, which can also be seen from
Fig. 1. This implies that the apocentre of each orbit is lo-
cated at the self-crossing point. Angular momentum loss
therefore amounts to reducing the post-shock velocity given
by equation (7) by a factor 1 − ∆jN/jN . This defines the
initial velocity of orbit N + 1

vN+1 = max
(

0, 1− ∆jN
jN

)
vsh
N , (16)

where the first term on the right-hand side is required to be
positive to prevent change of direction between vN+1 and
vsh
N . Orbit N + 1 starts from the intersection point given by

equation (6). Combined with its initial velocity, it allows to
compute the orbital elements of orbit N + 1.

2.3 Equivalent differential equation

As the stream follows the succession of orbits described
above, its energy ε and angular momentum j vary. In the
ε-j plane, the stream evolution is equivalent to the differen-
tial equation

dj
dε = ∆j

∆ε (17)

as long as the number of ellipses describing the stream evo-
lution is sufficiently large, where ∆ε and ∆j are given by
equations (9) and (14) respectively. Using the scaled quan-
tities ε̄ = −ε/c2 and j̄ = j/(Rgc), equation (17) becomes

dj̄
dε̄ = −2

(
Ke

e2

)(
vA

vc

)2 j̄3

sin2(3π/j̄2)
. (18)

In addition, the precession angle has been written as a func-
tion of angular momentum combining equations (4) and (5).
This differential equation can be solved numerically for the
initial conditions ε̄0 and j̄0, obtained from equations (1) and
(2). The use of scaled quantities makes equation (18) inde-
pendent of Mh and β. However, the initial conditions depend
on these parameters as ε̄0 ∝M1/3

h and j̄0 ∝M−1/3
h β−1/2.

An analytical solution can be found by slightly modify-
ing equation (18). The small angle approximation sin θ ≈ θ
allows to simplify the denominator. In addition, since Ke/e

2

only varies by a factor of a few with e, it can be re-
placed by an average value K̃ ≡

〈
Ke/e

2〉. Numerically,
we find that this factor can be fixed to K̃ = 5 indepen-
dently on the parameters. The resulting simplified equation

is dj̄/ dε̄ = −2K̃(vA/vc)2j̄7/(9π2) whose analytical solution
is

ε̄− ε̄0 = 3π2

4K̃

(
vA

vc

)−2 (
j̄−6 − j̄0

−6
)
. (19)

This simplified solution will be used in Section 3 to prove
interesting properties associated to the stream evolution.

2.4 Stream evolution outcome

As described above, the stream evolution is modelled by a
succession of ellipses. The orbital elements of any orbit N
can be computed iteratively knowing the orbital changes be-
tween successive orbits. This iteration is stopped when the
stream reaches one of the two following possible outcomes.
They correspond to critical values of the orbit angular mo-
mentum and eccentricity, below which the computation is
stopped.

(i) Ballistic accretion: if jN < jacc ≡ 4Rgc, the angular
momentum of the stream is low enough for it to be accreted
onto the black hole without circularizing.

(ii) Circularization: if eN < ecirc = 1/3, which corre-
sponds to a stream apocentre equal to only twice its peri-
centre, we consider that the stream has circularized.

Strictly speaking, the expression adopted for jacc is valid
only for a test-particle on a parabolic orbit. For a circular
orbit, it reduces to 2

√
3Rgc (Hobson et al. 2006), which is

lower by a factor of order unity. However, this choice does
not significantly affect our results as will be demonstrated in
Section 3.1. We therefore consider jacc as independent of the
stream orbit. Our choice for the critical eccentricity ecirc can
be understood by looking at the integral term in equation
(15), below which the function fe is defined. Our stopping
criterion e < 1/3 implies fe(π)/fe(0) < 2, which means that
the stream loses less than twice as much angular momentum
at apocentre than at pericentre. It is therefore legitimate to
assume that angular momentum is lost homogeneously along
the stream orbit from this point on.

If the computation ends with criterion (i), the stream
is accreted. Its subsequent evolution is then irrelevant since
it leads to no observable signal. If instead the computation
ends with criterion (ii), a circular disc forms from the stream.
This disc evolution is driven by magnetic stresses only, which
act to shrink the disc nearly circular orbit until it reaches
the innermost stable circular orbit, where it is accreted onto
the black hole.

3 RESULTS

We now present the results of our stream evolution model,
which depends on three parameters: the black hole mass Mh,
the penetration factor β and the ratio of Alfvén to circular
velocity vA/vc.3 The first two parameters define the initial
orbit of the debris through equations (1) and (2), from which
the iteration starts. As can be seen from equation (14), the

3 3D visualizations of the results presented in this paper
can be found at http://home.strw.leidenuniv.nl/˜bonnerot/
research.html.

c© 2014 RAS, MNRAS 000, 1–16
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6 Clément Bonnerot, Elena M. Rossi and Giuseppe Lodato

parameter vA/vc sets the efficiency of magnetic stresses at
removing angular momentum from the stream. The star’s
mass and radius are fixed to the solar values.

The time required for the stream to reach a given or-
bital configuration is defined as the time spent by the most
bound debris in all the previous orbits, starting from its first
passage at pericentre after the disruption. Of particular im-
portance is the time required for the stream to reach its final
configuration, corresponding to either ballistic accretion or
circularization. This evolution time is denoted tev.4

As in Section 2.3, the scaled energy and angular momen-
tum ε̄ = −ε/c2 > 0 and j̄ = j/(Rgc) will often be adopted
in the following. Note that energy loss implies an increase
of ε̄ due to the minus sign.

3.1 Dynamical evolution of the stream

We start by investigating the stream evolution for a tidal
disruption by a black hole of mass Mh = 106M� with a
penetration factor β = 1. Two different magnetic stresses
efficiencies are examined, corresponding to vA/vc = 0.06
and 0.3. The stream evolution is shown in Fig. 2 for
these two examples. It is represented by the ellipses it
goes through, starting from the orbit of the most bound
debris whose apocentre is indicated by a green star. The
final configuration of the stream is shown in orange. For
vA/vc = 0.06 (upper panel), the stream gradually shrinks
and becomes circular at tev/tmin = 3. The evolution differs
for vA/vc = 0.3 (lower panel) where the stream ends
up being ballistically accreted at tev/tmin = 0.6. These
evolutions can also be examined using Fig. 3 (black solid
lines), which shows the associated path in the j̄ − ε̄ plane.
For vA/vc = 0.06 (orange arrow), the stream evolves slowly
initially as can be seen from the black points associated to
fixed time intervals. As it loses more energy and angular
momentum, the evolution accelerates and the stream
rapidly circularizes reaching the grey dash-dotted line on
the right of the figure that corresponds to e = ecirc. Note
that if no magnetic stresses were present, the stream would
still circularize but following an horizontal line in this plane.
For vA/vc = 0.3 (purple arrow), the stream rapidly loses
angular momentum which leads to its ballistic accretion
when j < jacc, crossing the horizontal grey dash-dotted
line. The stream evolution outcome therefore depends on
the efficiency of magnetic stresses, given by the parameter
vA/vc. If they act fast enough, the stream loses enough
angular momentum to be accreted with a substantial
eccentricity. Otherwise, the energy loss through shocks
dominates, resulting in the stream circularization.

The influence of the magnetic stresses efficiency vA/vc
on the stream evolution can be analysed more precisely from
Fig. 4, which shows the semi-major axis af of the stream at
the end of its evolution as a function of vA/vc. The other
parameters are fixed to Mh = 106M� and β = 1. For low

4 If the stream shrinks by a large factor from one orbit to the
next, the debris might be distributed on several distinct orbits.
It is then possible that the whole stream has not reached its final
configuration even though the most bound debris did. This could
lead to an underestimate of tev.
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Figure 2. Stream evolution for two magnetic stresses efficien-
cies vA/vc = 0.06 (upper panel) and 0.3 (lower panel). The black
hole mass and penetration factor are fixed to Mh = 106M� and
β = 1. The black hole is at the origin. The succession of ellipses
starts from the orbit of the most bound debris, whose apocentre
is indicated by a green star on the left of the figure. Each stream
orbit is divided into two ellipses. The stream elements moving
towards the black hole follow the black ellipses. The dashed grey
ellipses, precessed with respect to the black ones, are covered by
the gas elements moving away from the black hole after pericen-
tre passage. The intersection point is located where the black and
grey ellipses cross. At this point, the orbit of the stream changes
due to shocks and magnetic stresses. The stream elements then
infall towards the black hole on the next solid black ellipse. The
first ten self-crossing points are indicated by the purple dots. At
the first crossing point, where the transition between orbit 0 and
1 happens, the red arrows show the velocity of the components
involved in the associated shock, vin

0 and vout
0 . The blue arrow

indicates the initial velocity of orbit 1, v1, after the debris expe-
rienced both shocks and magnetic stresses. This situation is also
illustrated in Fig. 1 for N = 0. The final orbit of the stream,
for which one of the two stopping criteria is satisfied, is depicted
in orange. For vA/vc = 0.06, the stream circularizes to form a
disc. For vA/vc = 0.3, the stream is ballistically accreted before
circularizing. The blue line represents a parabolic trajectory with
pericentre Rp, equal to that of the star. The trajectories of the
debris falling back towards the black hole within the tail are there-
fore contained between this line and the orbit of the most bound
debris.

values of vA/vc ≈ 10−2, the stream circularizes at the cir-
cularization radius (1 + e0)Rp

0 ≈ 2Rt obtained from an-
gular momentum conservation (horizontal dashed line). As
vA/vc increases, the stream circularizes closer to the black
hole since its angular momentum decreases due to magnetic
stresses during the circularization process. At vA/vc ≈ 10−1,
the final semi-major axis reaches its lowest value. This min-
imum corresponds to circularization with an angular mo-
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Figure 3. Stream evolution shown in the j̄−ε̄ plane for two values
of vA/vc = 0.06 (orange arrow) and 0.3 (purple arrow). The black
hole mass and penetration factor are fixed to Mh = 106M� and
β = 1. The spatial stream evolution for these two examples is
shown in Fig. 2. The black solid line corresponds to the succession
of ellipses. The red dashed line shows the numerical solution of
the differential equation (17) while the blue dotted line shows the
simplified analytical solution given by equation (19) with K̃ =
5. The horizontal grey dash-dotted line represents the angular
momentum j̄acc = 4 below which ballistic accretion occurs while
the vertical one shows the eccentricity ecrit = 1/3 below which
circularization happens.
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Figure 4. Semi-major axis of the stream at the end of the stream
evolution as a function of the magnetic stresses efficiency vA/vc.
The two other parameters are fixed to Mh = 106M� and β = 1,
for which the spatial stream evolution is shown in Fig. 2. From
top to bottom, the horizontal lines have the following meanings.
The dot-dashed line indicates the semi-major axis of the stream
after the first shock a1 ≈ Rint

0 /2 = 40Rt where Rint
0 denotes the

distance to the first self-crossing point. The dashed line represents
the circularization radius obtained from angular momentum con-
servation (1 + e0)Rp

0 ≈ 2Rt. Finally, the dotted line shows the
semi-major axis corresponding to a circular orbit with angular
momentum jacc, equal to 18Rg ≈ 0.4Rt.
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Figure 5. Stream evolution shown in the j̄ − ε̄ plane for various
values of the parameters. The meaning of the different lines are
the same as in Fig. 3. In each panel, the five sets of curves corre-
spond to different values of the magnetic efficiency vA/vc = 0.01,
0.03, 0.1, 0.3 and 1 (from top to bottom). The different panels
correspond to different values of Mh and β. The two top panels
show Mh = 106M� for β = 1 (upper left) and for β = 5 (upper
right). The two bottom panels adopt β = 1 for Mh = 105M�
(lower left) and Mh = 107M� (lower right). The set of thicker
curves is associated to a magnetic stresses efficiency vA/vc = 0.1,
which approximately corresponds to the critical value (equation
(20)) defining the boundary between circularization and ballistic
accretion, independently on Mh and β.

mentum exactly equal to jacc, for which af = 18Rg ≈ 0.4Rt.
For vA/vc & 10−1, the stream ends its evolution by being
ballistically accreted. This demonstrates again the existence
of a critical value (vA/vc)cr for the magnetic stresses effi-
ciency (vertical solid red line) that defines the boundary
between circularization (on the left) and ballistic accretion
(on the right). The final semi-major axis reaches a plateau at
vA/vc & 0.4, for which the stream gets ballistically accreted
after its first shock. In this region, af ≈ Rint

0 /2 = 40Rt,
where Rint

0 = 80Rt denotes the distance to the first in-
tersection point (see Fig. 2). The oscillations visible for
vA/vc . 0.4 are associated to different numbers of orbits
followed by the stream before its ballistic accretion. On the
left end of the plateau, the stream gets accreted after the
first self-crossing shock with an angular momentum just be-
low jacc. Decreasing vA/vc by a small amount prevents this
ballistic accretion since the stream now has an angular mo-
mentum just above jacc after the first shock. The stream
therefore undergoes a second shock, which is strong since
the previous pericentre passage occurred close to the black
hole with a large precession angle. The stream semi-major
axis therefore decreases by a large amount before ballistic
accretion. This results in a discontinuity in af at the edge of
the plateau. Decreasing vA/vc further, the stream passes fur-
ther away from the black hole which reduces apsidal preces-
sion and weakens the second shock. As a result, af increases.
When vA/vc becomes low enough for ballistic accretion to be
prevented after the second shock, a strong third shock occurs
before ballistic accretion which causes a second discontinu-
ity due to the sharp decrease of af . The same mechanism
occurs for larger numbers of orbits preceding ballistic accre-
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tion, producing the other discontinuities and increases of af
seen for a decreasing vA/vc and resulting in this oscillating
pattern.

The role of vA/vc in determining the stream evolution
outcome can be understood by looking again at Fig. 3. The
black solid lines are associated to the succession of ellipses
described above. The red dashed line shows the numerical
solution of the equivalent differential equation (18) while the
blue dotted line corresponds to the simplified analytical ver-
sion, given by equation (19). For vA/vc = 0.06, these three
descriptions are consistent and able to capture the stream
evolution. For vA/vc = 0.3, the evolution obtained from the
succession of ellipses differs from the two others. This is ex-
pected since the stream goes through only three ellipses in
this case, not enough for its evolution to be described by
the equivalent differential equation. An interesting property
of these solutions can be identified from equation (19). As
soon as ε̄ � ε̄0 and j̄6 � j̄6

0 , the position of the stream
in the j̄ − ε̄ plane becomes independent of the initial con-
ditions ε̄0 and j̄0, given by equations (1) and (2) respec-
tively. It is therefore dependent on vA/vc only, but not on
Mh and β anymore. In this case, one expect the critical value
(vA/vc)cr of the magnetic stresses efficiency to also be com-
pletely independent of Mh and β. In practice, the first con-
dition ε̄ � ε̄0 is always satisfied as long as the stream loses
energy by undergoing a few shocks since the initial orbit is
nearly parabolic with ε̄0 ≈ 0. The second one j̄6 � j̄6

0 is
however not satisfied in general for low values of j̄0. In fact,
j̄0 can be already close to j̄acc = 4 for large β or Mh, since
j̄0 = j0/(Rgc) ∝ β−1/2M

−1/3
h (equation (2)). To account for

this possibility, we define the factor f0 ≡ (j̄0/j̄acc)−6 satis-
fying 0 < f0 < 1. The critical value (vA/vc)cr, for which the
stream circularizes with an angular momentum j̄ = 4 (see
Fig. 4), can then be obtained analytically by fixing e = 1/3
and j̄ = 4 in equation (19) combined with 1 − e2 = 2j̄2ε̄.
This yields (vA/vc)cr = π(4096K̃/27(1−f0))−1/2 whose nu-
merical value is(
vA

vc

)
cr
≈ 10−1 (1− f0)1/2 (20)

using K̃ = 5. As anticipated, (vA/vc)cr ≈ 10−1 indepen-
dently of Mh and β as long as f0 � 1. This is the case for
Mh = 106 and β = 1, for which f0 ≈ 5 × 10−3 � 1. We
therefore recover the value of (vA/vc)cr ≈ 10−1 indicated in
Fig. 4 (red vertical line). For larger Mh or β, the condition
f0 � 1 is not necessarily satisfied. For example, f0 ≈ 0.5 for
Mh = 107 and β = 1. In this case, (vA/vc)cr is slightly lower
according to equation (20), but only by a factor less than 2.
In practice, f0 ≈ 1 only in the extreme case where the stream
is originally on the verge of ballistic accretion with j0 very
close to jacc. We can therefore conclude that the magnetic
stresses efficiency, delimiting the boundary between circular-
ization and ballistic accretion, has a value (vA/vc)cr ≈ 10−1

largely independently on the other parameters of the model,
Mh and β. In addition, note that this value is not signifi-
cantly affected by the choice we made for jacc as mentioned
in Section 2.4.

The value of (vA/vc)cr derived analytically in equa-
tion (20) can be confirmed from Fig. 5, which shows the
stream evolution in the j̄ − ε̄ plane for various values of the
parameters. The different lines have the same meaning as
in Fig. 3. In each panels, the six sets of lines shows dif-
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Figure 6. Stream evolution for Mh = 105M� (upper panel)
and Mh = 107M� (lower panel) with β = 1 and vA/vc = 0.06.
The different elements of this figure have the same meaning as
in Fig 2, whose upper panel shows the intermediate case with
Mh = 106M�.

ferent values of vA/vc = 0.01, 0.03, 0.1, 0.3 and 1 (from
top to bottom). The different panels correspond to vari-
ous choices for Mh and β. The thick set of lines indicates
vA/vc = 10−1. As expected from equation (20), it corre-
sponds exactly to the boundary between circularization and
ballistic accretion for Mh = 106M� (upper left panel) and
105M� (lower left panel), both with β = 1. This is because
f0 � 1 in these cases. However, increasing the black hole
mass to Mh = 107M� (lower right panel) or the penetration
factor to β = 5 (upper right panel), the stream is ballisti-
cally accreted for vA/vc = 10−1. This comes from the fact
that f0 is not completely negligible in these cases, which
implies (vA/vc)cr < 10−1 according to equation (20).

Although the stream evolution outcome only varies
with the magnetic efficiency vA/vc, the time required to
reach this final configuration and the orbits it goes through
in the process are dependent on Mh and β in addition to
vA/vc. The effect of varying the black hole mass only can be
seen by looking at Fig. 6, which shows the stream evolution
for Mh = 105M� (upper panel) and 107M� (lower panel)
keeping the other two parameters fixed to β = 1 and
vA/vc = 0.06. The intermediate case, with Mh = 106M�, is
shown in Fig. 2 (upper panel). For larger black hole masses,
the time for the stream to circularize is shorter, varying
from tev/tmin = 24 to 0.05 from Mh = 105M� to 107M�.
Note that this time is also reduced in physical units, from
tev = 310 to 6 days. The reason is that increasing the
black hole mass leads to a larger precession angle, which
causes the stream to self-cross closer to the black hole and
lose more energy. As a result, the stream evolves faster
to its final configuration. The same trend is expected if
the penetration β is increased since the precession angle
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Figure 7. Evolution time of the stream as a function of black
hole mass. The three shaded areas correspond to three values
of the magnetic stresses efficiency vA/vc = 0 (black), 0.06 (red)
and 0.3 (blue). Each area is delimited by two lines, which are
associated to β = 1 (upper line) and 5 (lower line). The dashed
black lines show the analytical estimate for the evolution time in
the absence of magnetic stresses given by equation (21) for β = 1
(top line) and 5 (bottom line). The cases shown in Fig. 2 and 6
are represented by the two purple diamonds and orange circles
respectively.

scales as φ ∝ Rg/Rp ∝ βM
2/3
h . Fig. 7 proves this fact by

showing the evolution time as a function of black hole mass
for several values of β and vA/vc. The different colours
correspond to different values of vA/vc while the width
of the shaded areas represents various values of β from 1
(upper line) to 5 (lower line). Furthermore, it can be seen
that the stream evolves more rapidly for larger values of
vA/vc. For example, tev decreases by about 2 orders of
magnitude for Mh = 105M� when the magnetic efficiency
is increased from vA/vc = 0 to 0.3. This is because angular
momentum loss from the stream at apocentre causes a
decrease of its pericentre distance, which results in stronger
shocks and a faster stream evolution.

For vA/vc = 0, the angular momentum of the stream
is conserved. The energy lost by the stream at each self-
crossing is then independent of the stream orbit as explained
at the end of Section 2.1. In this case, the evolution time
obeys the simple analytic expression

tev

tmin
= 2∆ε

∆ε0
= 8.3

(
Mh

106M�

)−5/3

β−3, (21)

where ∆ε0 represents the energy lost at each self-crossing
shock, given by equation (10). It should not be confused
with ∆ε, which is the initial energy of the stream equal to
that of the most bound debris according to equation (1).
For clarity, the derivation of equation (21) is made in Ap-
pendix A. As can be seen from Fig. 7, this analytical esti-
mate (dashed black lines) matches very well the value of the
evolution time obtained from the succession of ellipses with
vA/vc = 0 (black solid lines) for both β = 1 and 5. Equa-
tion (21) comes from a mathematical derivation but does
not have a clear physical reason. Imposing tev/tmin to be

constant leads to the relation β ∝M−5/9
h . Interestingly, this

dependence is similar although slightly shallower than that
obtained by imposing Rp/Rg to be constant, which gives
β ∝ M

−2/3
h . This latter relation has been used by several

authors to extrapolate the results of disc formation simu-
lations from unphysically low-mass black holes to realistic
ones (e.g. Shiokawa et al. 2015).

When vA/vc > (vA/vc)cr ≈ 10−1 and the stream is
eventually ballistically accreted, the evolution time tev is
always less than a few tmin for Mh ≈ 106M�. Moreover, a
significant amount of energy is lost before accretion, result-
ing in a final orbit substantially less eccentric than initially.
A typical case of ballistic accretion is illustrated by Fig. 2
(lower panel). The only scenario where significant energy
loss is avoided is if the stream is accreted immediately after
the first shock. However, in this case, tev is very low. This
behaviour is quite different from the evolution described by
Svirski et al. (2015), for which the stream remains highly
elliptical for tens of orbits progressively losing angular
momentum via magnetic stresses before being ballisti-
cally accreted. Our calculations demonstrate instead that
ballistic accretion happens on a short timescale, most of
the time associated with a significant energy loss via shocks.

3.2 Observational appearance

We now investigate the main observational features asso-
ciated to the stream evolution. Two sources of luminosity
are identified, which can be evaluated from the dynam-
ical stream evolution presented in Section 3.1. The first
source is associated to the energy lost by the stream due to
self-intersecting shocks. The associated stream self-crossing
shock luminosity can be evaluated as

Ls
sh = ηs

shṀs∆εs, (22)

where ∆εs is the instantaneous energy lost from the stream,
obtained from the succession of orbits described in Section
3.1 via a linear interpolation between successive orbits. Ṁs
represents the mass rate at which the stream enters the
shock, obtained from

Ṁs = Ms/∆tdis, (23)

where Ms is the mass of debris present in the stream and
∆tdis denotes the time required for all this matter to go
through the shock and dissipate its orbital energy. We ex-
plore two different ways of computing the mass of the
stream. The first assumes a flat energy distribution within
the disrupted star leading to Ms = 0.5M?(1 − (t/tmin +
1)−2/3). The second follows Lodato et al. (2009), which
adopts a more precise description of the internal structure
of the star, modelled by a polytrope. This latter approach
results in a shallower increase of the stream mass. If all the
gas present in the stream is able to pass through the inter-
section point, the time ∆tdis during which the debris energy
is dissipated is equal to the orbital period of the stream Ps.
However, this can be prevented if a shock component, ei-
ther the infalling or the ouflowing part of the stream, gets
exhausted earlier than the other. In this case, part of the
stream material keeps its original energy. Nevertheless, this
gas will eventually join the rest of the stream and release
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Figure 8. Evolution of the stream shock luminosity Ls
sh (red dashed line), tail shock luminosity Lt

sh (blue dashed line), given by equations
(22) and (25) respectively, and total shock luminosity Ls

sh + Lt
sh (solid black line) for black hole masses Mh = 105M� (left panel) and

106M� (right panel) assuming a flat energy distribution for the fallback rate and a stream dissipation timescale ∆tdis = Ps in equation
(23). Equal radiative efficiencies are adopted for the two shock sources, with ηs

sh = ηt
sh = 1. The other parameters are fixed to β = 1

and vA/vc = 0. The total luminosity is also shown for β = 2 (purple solid line), vA/vc = 0.08 (green solid line) and using the more
precise fallback rate evolution of Lodato et al. (2009) for a polytropic star with γ = 5/3 (grey solid line) keeping the other parameters
fixed. The shaded regions show the areas covered by the total luminosity as Lt

sh (red area) and Ls
sh (blue area) are decreased up to a

factor of 10 (red and blue solid lines). All the luminosities are scaled by the Eddington value LEdd. The orange solid segment indicates
the t−5/3 slope. The vertical yellow dashed segment marks the time before which the locations of self-crossing and tail shocks remain
similar, implying comparable radiative efficiencies ηs

sh ≈ ηt
sh.

its energy, only at slightly later times. This effect can there-
fore be accounted for by setting ∆tdis > Ps by a factor of
a few. Finally, the parameter ηs

sh is the shock radiative ef-
ficiency, which accounts for the possibility that not all the
thermal energy injected in the stream via shocks can be ra-
diated away and participate to the luminosity Ls

sh. Its value
depends on the optical thickness of the stream at the shock
location and can be estimated by

ηs
sh = min(1, tssh/tsdif), (24)

tsdif being the diffusion time at the self-crossing shock loca-
tion while tssh denotes the duration of the shock, equal to
the dynamical time at this position.

The second luminosity component is associated to the
tail of gas constantly falling back towards the black hole.
This newly arriving material inevitably joins the stream
from an initially nearly radial orbit. During this process,
its orbital energy decreases from almost zero to the orbital
energy of the stream. The tail orbital energy lost is trans-
ferred into thermal energy via shocks and can be radiated.
The associated tail shock luminosity is given by

Lt
sh = ηt

shṀfbεs, (25)

where εs is the instantaneous energy of the stream ob-
tained from the succession of ellipses by linearising be-
tween orbits. Ṁfb is the mass fallback rate at which the
tail reaches the stream. As for Ṁs in equation (22), we in-
vestigate two methods to compute the fallback rate. Assum-
ing a flat energy distribution within the disrupted star gives
Ṁfb = 1/3(M?/tmin)(t/tmin+1)−5/3, which corresponds to a
fallback rate peaking when the first debris reaches the black
hole, at t = 0, and immediately decreasing as t−5/3. Tak-
ing into account the stellar structure following Lodato et al.

(2009) leads to an initial rise of the fallback rate towards a
peak, reached for t of a few tmin, followed by a decrease as
t−5/3 at later times. The parameter ηt

sh is the radiative effi-
ciency at the location of the shock between tail and stream
present for the same reason as in equation (22). It can be
evaluated as in equation (24) by

ηt
sh = min(1, ttsh/ttdif), (26)

where ttdif is the diffusion time at the tail shock location and
ttsh is the duration of the shock.

Estimating the shock luminosities from equations (22)
and (25) implicitly assumes that most of the radiation is re-
leased shortly after the self-crossing points, neglecting any
emission close to the black hole. This assumption is legiti-
mate for the following reasons. As will be demonstrated in
Section 3.3, except in the ideal case where cooling is com-
pletely efficient, the stream rapidly expands under pressure
forces shortly after its passage through the shock. This ex-
pansion induces a decrease of the thermal energy available
for radiation as the stream leaves the shock location. Addi-
tionally, the radiative efficiency is likely lowered close to the
black hole due to an shorter dynamical time, which reduces
the emission in this region.

The radiative efficiencies ηs
sh and ηt

sh at the location
of the self-crossing and tail shocks, given by equations (24)
and (26) respectively, are a priori different since these two
categories of shocks can happen at different positions. At
early times, we nevertheless argue that they occur at similar
locations. A justification can be seen in Fig. 2 and 6 where
the blue solid line represents a parabolic trajectory with
pericentre Rp, equal to that of the star. Because the debris
in the tail are on elliptical orbits, their trajectories must be
contained between this line and the orbit of the most bound
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debris, whose apocentre is indicated by a green star. The
tail shocks therefore occur in the region delimited by these
two trajectories. Since the self-crossing points (purple dots)
are initially also located in this area, we conclude that the
two radiative efficiencies are similar, with ηs

sh ≈ ηt
sh early in

the stream evolution. At late times, when the stream orbit
has precessed significantly, the self-crossing points leave this
region possibly implying a significant difference between the
two radiative efficiencies, with ηs

sh 6= ηt
sh. The time at which

this happens is indicated by a vertical yellow dashed segment
in Fig. 8. Another possibility is that the radiative efficiency
decreases as the self-crossing points move closer to the black
hole. In the following, we therefore estimate the effect of
varying shock radiative efficiencies.

In the remainder of this section, values of ηs
sh and ηt

sh
close to 1 are adopted, which corresponds to a case of ef-
ficient cooling where most of the thermal energy released
by shocks is instantaneously radiated. Lower radiative effi-
ciencies would imply lower shock luminosities. However, the
shape of the total luminosity Ls

sh + Lt
sh remains unchanged

as long as ηs
sh ≈ ηt

sh. If cooling is inefficient, a significant
amount of thermal energy remains in the stream. The influ-
ence of this thermal energy excess on the subsequent stream
evolution will be evaluated in Section 3.3.

The two other contributions to the luminosities given
by equations (22) and (25) are orbital energy losses and
mass rates through the shock. It is informative to examine
the ratio between these quantities in the two shock luminos-
ity components. The mass rate involved in the self-crossing
shocks dominates that of tail shocks, with Ṁs � Ṁfb typ-
ically after the first stream intersection. This tends to in-
crease Ls

sh compared to Lt
sh. Since the velocities involved

in the two sources of shocks differ by at most
√

2 ≈ 1.4,
the change of momentum experienced by the stream during
tail shocks can be neglected compared to that imparted by
self-crossing shocks. This justifies a posteriori our assump-
tion of neglecting the dynamical influence of the tail on the
stream evolution. The energy losses, on the other hand, are
generally larger for the tail shocks, with εs � ∆εs. This
favours Lt

sh larger than Ls
sh. It is therefore not obvious a

priori which shock luminosity component dominates, which
motivates the precise treatment presented below.

Fig. 8 shows the temporal evolution of the stream shock
luminosity Ls

sh (red dashed line), tail shock luminosity Lt
sh

(blue dashed line), given by equations (22) and (25) respec-
tively, and total shock luminosity Ls

sh +Lt
sh (solid black line)

for Mh = 105M� (left panel) and 106M� (right panel) as-
suming a flat energy distribution for the fallback rate and
a stream dissipation timescale ∆tdis = Ps in equation (23).
Equal radiative efficiencies are adopted for the two shock
sources, with ηs

sh = ηt
sh = 1. The other two parameters are

fixed to β = 1 and vA/vc = 0. For Mh = 105M�, the tail
shock luminosity strongly dominates for t/tmin . 20. As this
luminosity is proportional to the fallback rate Ṁfb ∝ t−5/3,
the total shock luminosity also decreases as t−5/3 following
the solid orange segment. For t/tmin & 1, the stream shock
luminosity becomes dominant resulting in an increase of the
total shock luminosity. For Mh = 106M�, the tail shock lu-
minosity only weakly dominates initially, leading to a total
shock luminosity only slightly decreasing for t/tmin . 1 be-
fore increasing at later times. The reason for Lt

sh to drive the
total shock luminosity at early times only for Mh = 105M�

relates to the stream dynamical evolution discussed in Sec-
tion 3.1. For lower black hole masses, the stream evolution
is slower (see Fig. 7). The stream therefore retains a long
period Ps, which translates into a large value of the dissipa-
tion timescale ∆tdis = Ps. As a result, the stream mass rate
Ṁs through the shock diminishes (equation (23)) leading to
a lower stream shock luminosity. On the other hand, the tail
shock luminosity is unaffected since its temporal evolution
is set by the fallback rate Ṁfb, independent of the stream
evolution timescale. Fig. 8 also shows the total luminosity
for larger values of the penetration factor β = 2 (solid pur-
ple line) and magnetic stresses efficiency vA/vc = 0.08 (solid
green line) keeping the other parameters fixed. Since this im-
plies a faster stream evolution (see Fig. 7), the duration of
the light curve decay is reduced for Mh = 105M� and even
suppressed for Mh = 106M�. A similar behaviour is noticed
when the more precise fallback rate evolution of Lodato et al.
(2009) is adopted, assuming a polytopic star with γ = 5/3
(grey solid line). For Mh = 105M�, the only difference is
the presence of an initial increase towards a peak in the to-
tal luminosity evolution, reached at t/tmin ≈ 2. This peak
corresponds to the peak in the fallback rate, which the to-
tal luminosity follows initially. For Mh = 106M�, this more
accurate fallback rate evolution results in a total luminosity
always increasing since the fallback rate peaks at t/tmin ≈ 2,
where the stream shock luminosity already dominates.

The shaded regions in Fig. 8 show the areas covered by
the total luminosity as Lt

sh (red area) and Ls
sh (blue area) are

decreased up to a factor of 10 (red and blue solid lines). The
former can occur if the radiative efficiencies satisfy ηt

sh < ηs
sh,

which implies a decrease of the tail shock luminosity. The
latter can be associated to ηs

sh < ηt
sh or to a stream dissipa-

tion timescale such that ∆tdis > Ps, which both leads to a
lower stream shock luminosity. Decreasing Lt

sh leads to an
initially lower total luminosity. Since the stream shock lu-
minosity dominates earlier, the decay time is also quenched
for Mh = 105M� and even removed for Mh = 106M�. In-
stead, decreasing Ls

sh leads to a lower total luminosity at
late times with a longer initial decay time. A decrease of the
radiative efficiency as self-crossing points get closer to the
black hole would instead lead to a steeper decay of the total
shock luminosity.

The total shock luminosity computed above remain
mostly sub-Eddington. It is significantly lower than that Ld
associated to the viscous accretion of a circular disc, as-
suming its rapid formation around to the black hole. For
Mh = 106M�, the former peaks at Ld/LEdd ≈ 100 while
the latter only reaches (Lt

sh +Ls
sh)/LEdd ≈ 0.1. For this rea-

son, the shock luminosity has been proposed by Piran et al.
(2015) as the source of emission from optical TDEs, detected
at low luminosities. They also argue that this origin could
explain the t−5/3 decay of the optical light curve, as detected
from this class of TDEs (e.g. Arcavi et al. 2014). However,
this is only true if the tail shock luminosity component domi-
nates. According to Fig. 8, this requires Mh . 106M� for the
most favourable values of the other two parameters, β = 1
and vA/vc = 0. In addition, this luminosity component is
suppressed if magnetic stresses are efficient since they cause
the stream to evolve faster. This makes the ballistic accre-
tion scenario proposed by Svirski et al. (2015) difficult to
realize simultaneously with the decreasing optical luminos-
ity.
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Figure 9. Sketch illustrating the width evolution of a stream
element as it approaches the black hole. At a time t, the element
is located at a distance R from the black hole with a width H and
a length l. After a time ∆t, the element got closer to the black
hole by a distance ∆R while its width and length varied by ∆H
and ∆l.

3.3 Impact of inefficient cooling

In Section 3.2, values close to 1 have been adopted for the
shock radiative efficiencies ηs

sh and ηt
sh, artificially allowing

most of the thermal energy injected by shocks to be released
instantaneously in the form of radiation. Relaxing this as-
sumption, part of the thermal energy stays in the stream,
leading to its expansion through pressure forces. In this Sec-
tion, we estimate this widening of the stream due to both
stream self-crossing shocks and shocks between stream and
tail.

We start by deriving differential equations that relate
the width of a stream element to its distance from the black
hole. The situation is illustrated in Fig. 9 in the case where
the stream element is moving towards the black hole. At
a given time t, the element has a width H and is located
at a distance R from the black hole. A time ∆t later, its
distance from the black hole decreased by ∆R < 0 while
its width changed by ∆H. Since the width evolves under
the influence of both tidal and pressure forces, its variation
can be decomposed into two components ∆H = ∆Ht +
∆Hp, where ∆Ht and ∆Hp denote respectively the change
of width due to tidal and pressure forces. As the stream
element moves closer to the black hole, tidal forces induce
a decrease of its width by ∆Ht = −v⊥∆t where v⊥ is the
velocity of the external part of the stream, directed towards
the stream centre. For a nearly radial trajectory, v⊥ can
be related to the radial velocity vr of the stream via v⊥ ≈
(H/R)vr, which yields ∆Ht = (H/R)∆R < 0 using ∆R =
−vr∆t. Pressure forces cause the stream element to increase
by ∆Hp = cs∆t, where cs is the sound speed. Using ∆t =
−∆R/vr then leads to ∆Hp = −(cs/vr)∆R > 0. Putting

tidal and pressure components together, ∆H = (H/R −
cs/vr)∆R if the stream element approaches the black hole.
For a stream element moving away from the black hole, this
relation becomes ∆H = (H/R + cs/vr)∆R. The change of
sign is required since ∆R > 0 in this case while pressure
forces must still induce a increase of H. The evolution of
the stream width H as a function of distance R from the
black hole therefore obeys the differential equations

dH
dR =


H

R
− cs
vr

(inwards)

H

R
+ cs
vr

(outwards)
, (27)

The first equation is valid when the stream moves inwards,
towards the black hole. Instead, the second one corresponds
to an outward motion of the stream, moving away from the
black hole. In each equation, the first term on the right-
hand side corresponds to the effect of tidal forces. Alone, it
leads to an homologous evolution of the stream width, with
H ∝ R. This scaling can also be obtained by combining
equations 4 and 13 of Sari et al. (2010). Instead, the sec-
ond term is associated to pressure forces, which cause the
stream expansion. Strictly speaking, our treatment of tidal
effects is only valid for a nearly radial trajectory. However,
our evaluation of pressure effects also applies to an elliptic
orbit as long as vr denotes the radial component of the total
velocity. This method is legitimate since the stream trajec-
tory significantly differs from a nearly radial one only at
apocentre where pressure effects are found to be dominant.

For later use, we also derive the evolution of the stream
element length l with the distance R from the black hole,
still in the situation shown in Fig. 9. Pressure does not mod-
ify the element length since an expansion in the longitudi-
nal direction is prevented by neighbouring stream elements.
However, as the stream element moves closer to the black
hole, its length increases by ∆l due to tidal forces. More
precisely, this elongation is caused by the difference of ve-
locity within the stream element, whose parts closer to the
black hole move faster. The distance |∆R| travelled during
∆t therefore becomes a function of R. The relative increase
of length is then given by ∆l/l = − d|∆R|/ dR. The equa-
tion describing the element length evolution can then be
written as a function of the radial velocity vr, such that
dl/l = dvr/vr. l therefore follows the same scaling as vr with
R, that is l ∝ R−1/2 for a nearly radial orbit. Again, this
scaling can be found from Sari et al. (2010), combining their
equations 4 and 14.

Our goal is now to solve equations (27) for boundary
conditions defined by the dynamical model of Section 2 that
describes the stream evolution as a succession of orbits. As
we show below, this allows to compute iteratively the width
evolution of a stream element as it evolves around the black
hole. Consider first a given orbit N . The stream element en-
ters this orbit at apocentre, a distance Ra

N from the black
hole with a velocity va

N . It then approaches the black hole
down to a pericentre distance Rp

N where its velocity reaches
vp
N . These quantities are directly known from the dynami-

cal model. In addition, the element has an initial width Ha
N

and a sound speed cas,N at apocentre which can also be esti-
mated as explained below. In order to solve equations (27),
the evolution of the second term ±cs/vr as the element fol-
lows orbit N has to be evaluated. It requires to know the
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dependence on H and R of the sound speed cs,N and radial
velocity vr,N in this orbit. These dependencies are obtained
as follows. Assuming an adiabatic evolution, cs ∝ ρ1/3 with
ρ denoting the stream element density. Since the element
keeps the same mass, the cylindrical profile of the stream
imposes ρ ∝ H−2l−1. The scaling l ∝ R−1/2 derived above
for the element length then implies cs ∝ H−2/3R1/6. The
sound speed in orbit N can therefore be written

cs,N = cas,N

(
H

Ha
N

)−2/3(
R

Ra
N

)1/6

. (28)

Similarly, the radial velocity of the element is obtained from

vr,N = (va
Nv

p
N )1/2

(
Ra
N

R
− 1
)1/2(

1−
Rp
N

R

)1/2

, (29)

which vanishes at apocentre and pericentre. The evolution of
the stream element widthH with R as it moves inwards from
Ra
N to Rp

N is then obtained by solving numerically the first of
equations (27), using equations (28) and (29) to evaluate the
second term. The boundary condition is given by the element
width Ha

N at R = Ra
N . During the outwards motion of the

stream away from pericentre to the next crossing point, the
width evolution is found by solving the second of equations
(27), still combined with equations (28) and (29). In this
phase, the boundary condition requires to know the width
Hp
N at R = Rp

N , which is obtained from the continuity of
the element width at pericentre.

The last step to compute the element width evolution is
to estimate the sound speed cas,N at apocentre that appears
in equation (28). Since shocks and magnetic stresses act at
apocentre, both velocity and sound speed undergo discontin-
uous changes at this location. For the velocity, this disconti-
nuity has already been accounted for in the dynamical model
by computing va

N iteratively from its variation between two
successive orbits N and N + 1, according to equations (7)
and (16). The sound speed cas,N can be evaluated in a simi-
lar iterative way. This requires to know the relation between
the pre-shock sound speed cint

s,N of the stream element as it
reaches the intersection point of orbit N to the post-shock
sound speed cas,N+1 of the element as it leaves the shock lo-
cation from the apocentre of orbit N + 1. Since sound speed
is related to specific thermal energy, this amounts to find the
post-shock specific thermal energy ua

N+1 from its pre-shock
value uint

N . This jump in thermal energy corresponds to the
fraction of orbital energy lost through shocks from the tail
and the stream that is not radiated away. Summing the two
thermal energy components, this relation is

ua
N+1 = (1− ηsh)

Ṁ int
s,N (∆εs,N + uint

N ) + Ṁ int
fb,N εs,N

Ṁ int
s,N + Ṁ int

fb,N
, (30)

where Ṁ int
s,N and Ṁ int

fb,N are the mass rates at which the
stream and the tail enters the shocks respectively, evaluated
at the intersection point of orbit N . These factors account
for the mass difference between the tail and stream com-
ponents of the shock. ∆εs,N and εs,N are the energies lost
by the stream and the tail respectively during the shocks
at orbit N , which are computed from the dynamical stream
evolution. Equation (30) also assumes that the stream self-
crossing and tail shocks occur at the same position, leading
to a common radiative efficiency ηsh ≡ ηs

sh = ηt
sh for the

two shock sources. As explained in Section 3.2, this approx-
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Figure 10. Aspect ratio H/R of a stream element as a function
of distance from the black hole during the stream evolution. From
the upper left to the lower right panel, the shock radiative effi-
ciency increases from ηsh = 0 to 1 − ηsh = 10−1, 10−2, 10−3,
10−4 and 10−5. The other parameters are fixed to Mh = 106M�,
β = 1 and vA/vc = 0.06. The corresponding stream evolution is
shown in Fig. 2 (upper panel). The solid red lines correspond to
an inward motion of the stream element from apocentre (black
dot) to pericentre (black diamond), for which H/R is obtained by
solving the first of equations (27). The dashed blue lines are asso-
ciated to an outward motion of the stream, for which the second
of equations (27) is solved to compute H/R.

imation is legitimate, at least at early times. In general, the
relation uint

N � ∆εs,N holds. The numerator of equation (30)
is therefore (1− ηsh)(Ls

sh +Lt
sh)/ηsh (see equations (22) and

(25)), which corresponds as expected to the thermal energy
rate released by shocks but not radiated. Sound speed and
specific thermal energy are linked via

(cas,N )2 = 10
9 u

a
N , (31)

which allows to relate cas,N+1 to cas,N using equation (30).
cas,N can therefore be computed iteratively for any orbit N
starting from the pre-shock sound speed of the first shock,
which we set to cint

s,0 = 0 since the stream element has not
experienced any shock yet.

The evolution of the width H of a stream element as
a function of R during the stream evolution can now be
computed iteratively assuming an initial value for H and
its continuity at self-crossing points. At the location of the
first self-crossing point, a distance Rint

0 from the black hole,
the initial stream element width is fixed to R?. Although
H is imposed to be a continuous function of R, its deriva-
tive dH/ dR is discontinuous at apocentre and pericentre.
This is because the differential equation satisfied by dH/ dR
changes at these locations (see equation (27)). In addition, cs
increases instantaneously at apocentre where shocks occur
and thermal energy is injected into the stream. Furthermore,
since the radial velocity cancels at pericentre and apocentre,
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Figure 11. Aspect ratio H/R of a stream element as a function
of time during the stream evolution. From the top to the bottom
solid black line, the shock radiative efficiency ηsh increases from
ηsh = 0 to 1 − ηsh = 10−1, 10−2, 10−3, 10−4 and 10−5 (as
in Fig. 10). The other parameters are fixed to Mh = 106M�,
β = 1 and vA/vc = 0.06. The blue line corresponds to a larger
magnetic stresses efficiency vA/vc = 0.3 for ηsh = 0, keeping
the other parameters fixed. The corresponding stream evolutions
are shown in Fig. 2. The dots indicate apocentre passages. The
vertical dashed lines represents the evolution time tev at which
the stream ends its evolution in each case. The horizontal red
dash-dotted line shows H/R = 1.

dH/ dR becomes infinite at these locations (see equations
(27) and (29)) resulting in a vertical tangent for H.

Our evaluation of the stream width evolution assumes
that radiation only occurs near the self-crossing points and
neglect any emission from the stream when it gets closer
to the black hole. This allows to adopt an adabatic evolu-
tion for the stream element away from self-crossing points,
which has been used to derive equation (28). Note that this
assumption has already been made in Section 3.2 to compute
the shock luminosities. It is justified because the radiative
efficiency likely decreases close to the black hole due to a
shorter dynamical time in that region. If the stream is nev-
ertheless able to cool at this location, pressure forces would
be lowered reducing the stream expansion.

Fig. 10 shows the aspect ratio H/R of a stream element
as a function of distance R from the black hole during the
stream evolution for increasing values of the shock radiative
efficiency, from ηsh = 0 (upper left panel) to 1− ηsh = 10−1,
10−2, 10−3, 10−4 and 10−5 (lower right panel). The other pa-
rameters are fixed to Mh = 106M�, β = 1 and vA/vc = 0.06.
The corresponding stream evolution is shown in Fig. 2 (up-
per panel). Initially, the stream element is located at the
first self-crossing point, a distance Rint

0 = 80Rt from the
black hole (see Fig. 2, upper panel). The initial aspect ra-
tio is R?/Rint

0 ≈ 10−4 that is not visible on the figure. Af-
ter the first shock, the aspect ratio increases and appears
on the lower right part of each panel. It then continues to
increase as the stream element successively moves inwards
(solid red lines) and outwards (dashed blue line) between
apocentre (black points) and pericentre (black diamonds).
H/R experiences a sharp increase shortly after each apocen-
tre passage since thermal energy is injected into the stream

at these locations (equation (30)). Away from self-crossing
points, the stream element width follows an almost homol-
ogous evolution H ∝ R since tidal forces dominate over
pressure forces. As mentioned above, if the element was al-
lowed to cool in this region, its width evolution would get
even closer to an homologous one since pressure would be
reduced. This would result in a slightly slower expansion of
the stream. For ηsh = 0 (upper left panel), the aspect ratio
becomes H/R > 1 after only a few (two) apocentre pas-
sages. For larger radiative efficiencies ηsh, the aspect ratio
increases more slowly. This is because less thermal energy is
injected into the stream, which reduces the impact of pres-
sure forces on the stream widening (equations (30), (31) and
(27)). The rapid aspect ratio increase seen for ηsh = 0 per-
sists as long as 1− ηsh & 10−3. As can be seen from Fig. 11
(solid black lines), the aspect ratio reaches H/R > 1 after a
time t ≈ tmin, which corresponds to only a third of its evolu-
tion time tev/tmin = 3. When the shock radiative efficiency
satisfies 1 − ηsh . 10−4, the aspect ratio remains H/R < 1
after a significant number of apocentre passages. Only for
1 − ηsh = 10−5 (lower right panel), the stream circularizes
with an aspect ratio H/R < 1 (lower right panel of Fig. 10
and bottom black solid line of Fig. 11).

Although the aspect ratio evolution is only shown for
a particular set of parameters, this behaviour is similar for
a large range of values for Mh, β and vA/vc. A difference
can nevertheless be noticed in the case of a rapid stream
evolution, favoured for large values of these parameters (see
Fig. 7). It can be understood by looking at the blue line of
Fig. 11, for which the magnetic stresses efficiency is increased
to vA/vc = 0.3 compared to the top black line that shows
vA/vc = 0.06, both adopting a shock radiative efficiency
ηsh = 0. For vA/vc = 0.3, the stream experiences only two
self-crossing before being ballistically accreted at tev/tmin =
0.6, as can be seen from the corresponding stream evolution
shown in of Fig. 2 (lower panel). As a result, only a small
amount of thermal energy is injected in the stream, which
results in an aspect ratio H/R = 0.6 < 1 at the end of its
evolution, even for ηsh = 0. This trend is also present for an
increased black hole mass. For Mh = 107M�, keeping β = 1
and vA/vc = 0.06, the stream circularizes with H/R < 1
for lower radiative efficiencies than Mh = 106M�, with a
critical value 1− ηsh ≈ 10−2 > 10−5.

When the aspect ratio becomes H/R & 1, pressure
forces cannot anymore be neglected to describe the stream
dynamics as we assume in our stream evolution model. This
widening of the stream causes a large spread in its orbital pa-
rameters. The gas involved in the outward expansion moves
to larger orbits while that expanding inwards gets shorter or-
bits. This is likely to cause complicated interactions between
different portions of the stream, which are not captured by
our model. The stream is likely to subsequently evolve into a
thick torus, or even an envelope surrounding the black hole

4 DISCUSSION AND CONCLUSION

The dynamical evolution of the debris stream produced dur-
ing TDEs is driven by two main mechanisms: magnetic
stresses and shocks. Although these processes have been
considered independently, their simultaneous effect has not
been investigated. In this paper, we present a stream evolu-
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tion model which takes both mechanisms into account. We
demonstrate the existence of a critical magnetic stresses ef-
ficiency that sets the boundary between circularization and
ballistic accretion. Interestingly, its value (vA/vc)cr ≈ 10−1

is found to be largely independent of the black hole mass
and penetration factor. In the absence of magnetic stresses,
we derive an analytical estimate for the circularization
timescale tev/tmin = 8.3(Mh/106M�)−5/3β−3. If magnetic
stresses act on the stream, we prove that their dominant ef-
fect is to accelerate the stream evolution by strengthening
self-crossing shocks. Ballistic accretion therefore necessarily
occurs very early in the stream evolution. Instead, we show
that a t−5/3 decay of the shock luminosity light curve, likely
associated to optical emission (Piran et al. 2015), requires
a slow stream evolution. This is favoured for low black hole
masses Mh . 106M� and hard to reconcile with the strong
magnetic stresses necessary for the ballistic accretion sce-
nario proposed by Svirski et al. (2015). Finally, we demon-
strate that even marginally inefficient cooling with shock
radiative efficiency ηsh . 1 leads to the rapid formation of
a very thick torus around the black hole, which could even
evolve into an envelope encompassing it as proposed by sev-
eral authors (Guillochon et al. 2014; Metzger & Stone 2015).
This thick structure could act as a reprocessing layer that
intercepts a fraction of the X-ray photons released as debris
accretes onto the black hole and re-emit them as optical
light. In this picture, the detection of X-ray emission would
however be dependent on the viewing angle. For example,
the X-ray photons could still be able to escape along the
funnels of a thick torus but not along its orbital plane.

In the absence of magnetic stresses, the stream evolu-
tion predicted by our model is qualitatively consistent with
existent numerical simulations of disc formation from TDEs.
Specifically, our model can be compared to Bonnerot et al.
(2016a) who consider the disruption of bound stars by a
non-rotating black hole of mass Mh = 106M�. For a stel-
lar eccentricity e = 0.95 and penetration factor β = 5, they
find that disc formation occurs in less than a dynamical time
due to strong apsidal precession. For β = 1, their simulations
predict instead a series of self-crossing shocks that leads to a
longer circularization from an initially eccentric disc due to
weaker apsidal precession. These two numerical results are
in line with our analytic model, which considers the most
general case of a parabolic stellar orbit. Finally, the rapid
thickening of the stream predicted analytically in this paper
in the case of inefficient cooling is consistent with several disc
formation simulations that assume an adiabatic equation of
state for the debris (Guillochon et al. 2014; Shiokawa et al.
2015; Bonnerot et al. 2016a; Hayasaki et al. 2015; Sadowski
et al. 2015). However, these simulations have been performed
in the restricted case of either very low black hole masses
or bound stars for numerical reasons. Instead, our analytic
model treats the standard case.

The range of magnetic stresses efficiencies vA/vc inves-
tigated has been set by assuming saturation of the MRI.
Although this assumption is legitimate in well-ordered discs
after a few dynamical timescales, it is unclear whether it
holds in the case of the debris stream that is likely to lose
its ordering through shocks. If the MRI has not reached satu-
ration, vA/vc would be lowered thus reducing the dynamical
effect of magnetic stresses and preventing ballistic accretion.

If it goes down to vA/vc . 10−2, magnetic stresses would
even become dynamically irrelevant.

To estimate the widening of the stream, we investi-
gate a wide range of radiative shock efficiencies. The values
expected physically for this parameter can be determined
by the following calculation. Assuming that the photons
propagate in the direction transverse to the stream trajec-
tory, the diffusion time for them to escape the stream is
tdif = c/(τHsh) with τ and Hsh the optical depth and width
at the shock location. The optical depth can be estimated by
τ = ΣκT where Σ denotes the column density at the shock
location and κT = 0.4 cm2/g is the Thomson opacity. The
column density can be approximated by Σ ≈ Ṁtsh/H

2
sh, de-

noting by Ṁ = Ṁd + Ṁfb the total mass rate of matter
through the shock location. Combining these expressions,
the shock radiative efficiency takes the form ηsh ≡ tsh/tdif ≈
Hshc/(κTṀ). For the first self-crossing shock, Hsh ≈ R?
and Ṁ ≈ M?/(3tmin), which corresponds to the peak fall-
back rate. This leads to an initial radiative efficiency of
ηsh ≈ 10−5(Mh/106M�)1/2(R?/R�)5/2(M?/M�)−2, where
the parameters adopted assume the disruption of a solar-
type star. This implies that a very inefficient cooling is ex-
pected in this case. This estimate is consistent with recent
radiative transfer simulations by Jiang et al. (2016) focusing
on the stream self-intersection region. They obtain values of
the shock radiative efficiency of ηsh ≈ 0.01−0.1 for mass ac-
cretion rates roughly three orders of magnitude lower than
used in our estimation. This expression also demonstrates
that the shock radiative efficiency is expected to increase for
disruptions involving red giants, up to ηsh ≈ 1 if the stellar
radius reaches R? ≈ 100 R�. For the following shocks, the
dependence ηsh ∝ HshṀ

−1 implies the following evolution
of the shock radiative efficiency. During the initial expansion
of the stream, Hsh rapidly increases (see Fig. 11) and so does
ηsh, most likely by a few orders of magnitude. Later in time,
the stream expansion stalls. The increase of Ṁ ≈ Ṁd then
dominates and eventually induces a drop of ηsh. This tem-
poral dependence of ηsh is unlikely to significantly affect our
results for the width evolution of the stream. However, it in-
duces a modulation of the shock luminosity since the amount
of radiation able to diffuse out of the stream depends on the
shock radiative efficiency.

The only effect of magnetic stresses considered in our
model is angular momentum loss at apocentre, thus increas-
ing further the stream eccentricity. However, another possi-
bility has been pointed out by numerical simulations. It was
found that small-scale instability can develop in eccentric
discs that damps the eccentricity (Papaloizou 2005; Barker
& Ogilvie 2016).

Finally, we neglect for simplicity the black hole spin
in our calculations. If the orbital plane of the debris is not
orthogonal to the black hole spin, it causes the stream to
change orbital plane when it passes at pericentre. One pos-
sible consequence is to delay the onset of circularization by
preventing the first self-crossing (Dai et al. 2013; Guillo-
chon & Ramirez-Ruiz 2015). However, it can also lead to
faster energy dissipation due to complicated interactions
between parts of the stream belonging to different orbital
planes (Hayasaki et al. 2015).

Our model provides a first attempt at studying the evo-
lution of the debris stream under both shocks and magnetic
stresses. It is attractive by its simplicity and points out sev-
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eral solid features about the dynamics, observational ap-
pearance and geometry of the stream as it evolves around
the black hole. However, given the complexity of this pro-
cess and the numerous physical mechanisms involved, global
simulations are necessary to definitely settle the fate of these
debris.
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APPENDIX A: ANALYTIC EVOLUTION TIME

Here, we derive the analytical expression for the evolution
time in the absence of magnetic stresses, given by equation
(21). The evolution time is defined by the time spent in all
the orbits followed by the stream during the succession of
ellipses described in Section 2. Mathematically,

tev =
Nev∑
N=0

PN , (32)

where Nev is the total number of orbits followed by the
stream and PN is the period of the stream in orbit N . Since
period and energy are related by P = 2πGMh(−2ε)−3/2 ac-
cording to Kepler’s third law, dP 1/3/dε = (2πGMh)−2/3P
whose discretized version can be written

P
1/3
N+1 − P

1/3
N

∆εN
= −(2πGMh)−2/3PN , (33)

where ∆εN is the energy lost by the stream at each shock.
As explained at the end of Section 2.1, ∆εN is indepen-
dent of N if no magnetic stresses act on the stream. Its
value is then ∆ε0, given by equation (10). Using tmin =
2πGMh(2∆ε)−3/2, equation (33) can therefore be rewritten

P
1/3
N+1 − P

1/3
N = −∆ε0

2∆ε
PN

t
2/3
min

. (34)

Summing both sides from N = 0 to Nev, the terms on the
left-hand side cancel two by two leading to

P
1/3
Nev+1 − P

1/3
0 = −∆ε0

2∆ε
tev

t
2/3
min

, (35)

where equation (32) has been used to write tev on the right-
hand side. As demonstrated in Section 3, the final outcome
of the stream is circularization for vA/vc = 0 implying
P

1/3
Nev+1 � P

1/3
0 . Therefore, equation (35) can be simplified

to
tev

tmin
= 2∆ε

∆ε0
, (36)
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using the fact that the initial stream period is P0 = tmin.
This demonstrates the analytical expression for the evolu-
tion time.
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