77 research outputs found

    Measuring human-error probabilities in drug preparation: a pilot simulation study

    Get PDF
    Objectives: Designing a safe medication process requires the ability to model its reliability using methods such as probabilistic risk assessment (PRA). However, lack of data, especially on human-error probabilities (HEPs), limits its use. To assess whether small-scale simulations could help generate HEP data, a pilot study was conducted among nurses and anaesthetists. It focused on two core activities, namely, the manual preparation of medications and the arithmetic necessary to prepare drugs. Its specific objectives were to evaluate whether HEPs could be high enough to be measurable and to determine whether these HEPs could be sensitive to individuals and task details. These would give some insight into the level of detail required by PRA analysis. Methods: Thirty nurse and 28 anaesthetist volunteers were involved in the experiment. Nurses and anaesthetists had to prepare medications for 20 patients and 22 syringes of various drugs, respectively. Both groups had to perform 22 calculations relating to the preparation of drugs. HEPs, distribution of HEPs and dependency of HEPs on individuals and task details were assessed. Results: In the preparation tasks, overall HEP was 3.0% for nurses and 6.5% for anaesthetists. In the arithmetic tasks, overall HEP was 23.8% for nurses and 8.9% for anaesthetists. A statistically significant difference was noted between the two groups. In both preparation and arithmetic tasks, HEPs were dependent on individual nurses but not on individual anaesthetists. In every instance, HEPs were dependent on task details. Conclusion: Our study illustrates that small-scale simulations represent an interesting way of generating HEPs. HEPs are, indeed, in the range of 10−2 and 10−1. But in most cases, HEPs depend heavily on operators and task details. This dependency means that the influence of these parameters must be determined before advanced PRA analysis. There is therefore an urgent need to develop experimental research into assessing this influence by means of randomised controlled trial

    Identification and weighting of the most critical "real-life” drug-drug interactions with acenocoumarol in a tertiary care hospital

    Get PDF
    Purpose: The objective of this study was to identify the most clinically relevant drug-drug interactions (DDIs) at risk of affecting acenocoumarol safety in our tertiary care university hospital, a 2,000 bed institution. Methods: We identified DDIs occurring with acenocoumarol by combining two different sources of information: a 1-year retrospective analysis of acenocoumarol prescriptions and comedications from our Computerized Physician Order Entry (CPOE) system (n = 2,439 hospitalizations) and a retrospective study of clinical pharmacology consultations involving acenocoumarol over the past 14 years (1994-2007) (n = 407). We classified these DDIs using an original risk-analysis method. A criticality index was calculated for each associated drug by multiplying three scores based on mechanism of interaction, involvement in a supratherapeutic international normalized ratio (INR) (≥ 6) and involvement in a severe bleeding. Results: One hundred and twenty-six DDIs were identified and weighted. Twenty-eight drugs had a criticality index ≥ 20 and were therefore considered at high risk for interacting with acenocoumarol by increasing its effect: 75% of these drugs involved a pharmacokinetic mechanism and 14 % a pharmacodynamic mechanism. An unknown mechanism of interaction was involved in 11 % of drugs. Conclusion: Twenty-eight specific drugs were identified as being at high risk for interacting with acenocoumarol in our hospital using an original risk-analysis method. Most analyzed drugs interact with acenocoumarol via a pharmacokinetic mechanism. Actions such as the implementation of alerts in our CPOE system should be specifically developed for these drug

    Identification and weighting of the most critical "real-life” drug-drug interactions with acenocoumarol in a tertiary care hospital

    Get PDF
    Purpose: The objective of this study was to identify the most clinically relevant drug-drug interactions (DDIs) at risk of affecting acenocoumarol safety in our tertiary care university hospital, a 2,000 bed institution. Methods: We identified DDIs occurring with acenocoumarol by combining two different sources of information: a 1-year retrospective analysis of acenocoumarol prescriptions and comedications from our Computerized Physician Order Entry (CPOE) system (n = 2,439 hospitalizations) and a retrospective study of clinical pharmacology consultations involving acenocoumarol over the past 14 years (1994-2007) (n = 407). We classified these DDIs using an original risk-analysis method. A criticality index was calculated for each associated drug by multiplying three scores based on mechanism of interaction, involvement in a supratherapeutic international normalized ratio (INR) (≥ 6) and involvement in a severe bleeding. Results: One hundred and twenty-six DDIs were identified and weighted. Twenty-eight drugs had a criticality index ≥ 20 and were therefore considered at high risk for interacting with acenocoumarol by increasing its effect: 75% of these drugs involved a pharmacokinetic mechanism and 14 % a pharmacodynamic mechanism. An unknown mechanism of interaction was involved in 11 % of drugs. Conclusion: Twenty-eight specific drugs were identified as being at high risk for interacting with acenocoumarol in our hospital using an original risk-analysis method. Most analyzed drugs interact with acenocoumarol via a pharmacokinetic mechanism. Actions such as the implementation of alerts in our CPOE system should be specifically developed for these drug

    Sterile preparations for clinical trials

    Get PDF

    Efficacy of Two Cleaning Solutions for the Decontamination of 10 Antineoplastic Agents in the Biosafety Cabinets of a Hospital Pharmacy

    Get PDF
    OBJECTIVE: This study aimed to evaluate two cleaning solutions for the chemical decontamination of antineoplastic agents on the surfaces of two biosafety cabinets routinely used for chemotherapy preparation in a hospital pharmacy. METHODS: For almost 1 year (49 weeks), two different solutions were used for the weekly cleaning of two biosafety cabinets in a hospital pharmacy's centralized cytotoxic preparation unit. The solutions evaluated were a commercial solution of isopropyl alcohol (IPA) and water (70:30, vol:vol), and a detergent solution constituted by 10(-2)M of sodium dodecyl sulfate (SDS) with 20% IPA. Seven areas in each biosafety cabinet were wiped 14 times throughout the year, before and after the weekly cleaning process, according to a validated procedure. Samples were analyzed using a validated method of high-performance liquid chromatography coupled to mass spectrometry. The decontamination efficacy of these two solutions was tested for 10 antineoplastic agents: cytarabine, gemcitabine, methotrexate, etoposide phosphate, irinotecan, cyclophosphamide, ifosfamide, doxorubicin, epirubicin, and vincristine. RESULTS: Overall decontamination efficacies observed were 82±6% and 49±11% for SDS solution and IPA, respectively. Higher contamination levels were distributed on areas frequently touched by the pharmacy technicians-such as sleeves and airlock handles-than on scale plates, gravimetric control hardware, and work benches. Detected contaminations of cyclophosphamide, ifosfamide, gemcitabine, and cytarabine were higher than those of the others agents. SDS solution was almost 20% more efficient than IPA on eight of the antineoplastic agents. CONCLUSION: Both cleaning solutions were able to reduce contamination levels in the biosafety cabinets. The efficacy of the solution containing an anionic detergent agent (SDS) was shown to be generally higher than that of IPA and, after the SDS cleaning procedure, biosafety cabinets demonstrated acceptable contamination levels

    Evaluation of decontamination efficacy of cleaning solutions on stainless steel and glass surfaces contaminated by 10 antineoplastic agents

    Get PDF
    OBJECTIVES: The handling of antineoplastic agents results in chronic surface contamination that must be minimized and eliminated. This study was designed to assess the potential of several chemical solutions to decontaminate two types of work surfaces that were intentionally contaminated with antineoplastic drugs. METHODS: A range of solutions with variable physicochemical properties such as their hydrophilic/hydrophobic balance, oxidizing power, desorption, and solubilization were tested: ultrapure water, isopropyl alcohol, acetone, sodium hypochlorite, and surfactants such as dishwashing liquid (DWL), sodium dodecyl sulfate (SDS), Tween 40, and Span 80. These solutions were tested on 10 antineoplastic drugs: cytarabine, gemcitabine, methotrexate, etoposide phosphate, irinotecan, cyclophosphamide, ifosfamide, doxorubicin, epirubicin, and vincristine. To simulate contaminated surfaces, these molecules (200ng) were deliberately spread onto two types of work surfaces: stainless steel and glass. Recovered by wiping with a specific aqueous solvent (acetonitrile/HCOOH; 20/0.1%) and an absorbent wipe (Whatman 903®), the residual contamination was quantified using high-performance liquid chromatography (HPLC) coupled to mass spectrometry. To compare all tested cleaning solutions, a performance value of effectiveness was determined from contamination residues of the 10 drugs. RESULTS: Sodium hypochlorite showed the highest overall effectiveness with 98% contamination removed. Ultrapure water, isopropyl alcohol/water, and acetone were less effective with effectiveness values of 76.8, 80.7, and 40.4%, respectively. Ultrapure water was effective on most hydrophilic molecules (97.1% for cytarabine), while on the other hand, isopropyl alcohol/water (70/30, vol/vol) was effective on the least hydrophilic ones (85.2% for doxorubicin and 87.8% for epirubicin). Acetone had little effect, whatever the type of molecule. Among products containing surfactants, DWL was found effective (91.5%), but its formulation was unknown. Formulations with single surfactant non-ionics (tween 40 and span 80) or anionic (SDS) were also tested. Finally, solutions containing 10(-2) M anionic surfactants and 20% isopropyl alcohol had the highest global effectiveness at around 90%. More precisely, their efficacy was the highest (94.8%) for the most hydrophilic compounds such as cytarabine and around 80.0% for anthracyclines. Finally, the addition of isopropyl alcohol to surfactant solutions enhanced their decontamination efficiency on the least hydrophilic molecules. Measured values from the stainless steel surface were similar to those from the glass one. CONCLUSION: This study demonstrates that all decontamination agents reduce antineoplastic contamination on work surfaces, but none removes it totally. Although very effective, sodium hypochlorite cannot be used routinely on stainless steel surfaces. Solutions containing anionic surfactant such as SDS, with a high efficiency/safety ratio, proved most promising in terms of surface decontamination

    Risk and pharmacoeconomic analyses of the injectable medication process in the paediatric and neonatal intensive care units

    Get PDF
    OBJECTIVE: To analyse safety risks in injectable medications. To assess the potential impact and pharmacoeconomic aspects of safety tools. DESIGN: The injectable drug process was prospectively assessed using a failure modes, effects and criticality analysis. Criticality indexes were estimated based on their likelihood of occurrence, detection probability and potential severity. The impact of 10 safety tools on the criticality index was calculated and extrapolated to all drugs injected daily. Yearly costs for a reduction in criticality by 1 point (=1 quali) per day were estimated. SETTING: Paediatric and neonatal intensive care units in a University Hospital. PARTICIPANTS: Two paediatric nurses, a neonatologist, three hospital pharmacists. INTERVENTIONS: Qualitative and quantitative risk assessment. MAIN OUTCOME MEASURES: Failure modes, criticality indexes, cost-efficacy ratios. RESULTS: Thirty-one failure modes identified, with the mean of their entire criticality indexes totalling 4540. The most critical failure mode was microbial contamination. The following gains were predicted: 1292 quali (46 500 per day by extrapolation) from ready-to-use syringes, 1201 (72 060) by employing a clinical pharmacist, 996 (59 780) from double check by nurses and 984 (59 040) with computerized physician order entry. The best cost-efficacy ratios were obtained for a clinical pharmacist (1 quali = 0.54 euros), double check (1 quali = 0.71 euros) and ready-to-use syringes (1 quali = 0.72 euros). Computerized physician order entry showed the worst cost-efficacy ratio due to a very high investment costs (1 quali = 22.47 euros). CONCLUSION: Based on our risk and pharmacoeconomic analyses, clinical pharmacy and ready-to-use syringes appear as the most promising safety tools
    corecore