757 research outputs found
Acute Hepatic Porphyrias: Review and Recent Progress.
The acute hepatic porphyrias (AHPs) are a group of four inherited diseases of heme biosynthesis that present with episodic, acute neurovisceral symptoms. The four types are 5-aminolevulinic acid (ALA) dehydratase deficiency porphyria, acute intermittent porphyria, hereditary coproporphyria, and variegate porphyria. Their diagnoses are often missed or delayed because the clinical symptoms mimic other more common disorders. Recent results indicate that acute intermittent porphyria, the most severe of the more common types of AHP, is more prevalent than previously thought, occurring in about 1 in 1600 Caucasians, but with low clinical penetrance (approximately 2%-3%). Here we provide an updated review of relevant literature and discuss recent and emerging advances in treatment of these disorders. Symptomatic attacks occur primarily in females between 14 and 45 years of age. AHP is diagnosed by finding significantly elevated levels of porphyrin precursors ALA and porphobilinogen in urine. Acute attacks should be treated promptly with intravenous heme therapy to avoid the development of potentially irreversible neurologic sequelae. All patients should be counseled about avoiding potential triggers for acute attacks and monitored regularly for the development of long-term complications. Their first-degree relatives should undergo targeted gene testing. Patients who suffer recurrent acute attacks can be particularly challenging to manage. Approximately 20% of patients with recurrent symptoms develop chronic and ongoing pain and other symptoms. We discuss newer treatment options in development, including small interfering RNA, to down-regulate ALA synthase-1 and/or wild-type messenger RNA of defective genes delivered selectively to hepatocytes for these patients. We expect that the newer treatments will diminish and perhaps obviate the need for liver transplantation as treatment of these inborn metabolic disorders
The Zebrafish Homologue of the Human DYT1 Dystonia Gene Is Widely Expressed in CNS Neurons but Non-Essential for Early Motor System Development
DYT1 dystonia is caused by mutation of the TOR1A gene, resulting in the loss of a single glutamic acid residue near the carboxyl terminal of TorsinA. The neuronal functions perturbed by TorsinA[ΔE] are a major unresolved issue in understanding the pathophysiology of dystonia, presenting a critical roadblock to developing effective treatments. We identified and characterized the zebrafish homologue of TOR1A, as a first step towards elucidating the functions of TorsinA in neurons, in vivo, using the genetically-manipulable zebrafish model. The zebrafish genome was found to contain a single alternatively-spliced tor1 gene, derived from a common ancestral locus shared with the dual TOR1A and TOR1B paralogues found in tertrapods. tor1 was expressed ubiquitously during early embryonic development and in multiple adult tissues, including the CNS. The 2.1 kb tor1 mRNA encodes Torsin1, which is 59% identical and 78% homologous to human TorsinA. Torsin1 was expressed as major 45 kDa and minor 47 kDa glycoproteins, within the cytoplasm of neurons and neuropil throughout the CNS. Similar to previous findings relating to human TorsinA, mutations of the ATP hydrolysis domain of Torsin1 resulted in relocalization of the protein in cultured cells from the endoplasmic reticulum to the nuclear envelope. Zebrafish embryos lacking tor1 during early development did not show impaired viability, overt morphological abnormalities, alterations in motor behavior, or developmental defects in the dopaminergic system. Torsin1 is thus non-essential for early development of the motor system, suggesting that important CNS functions may occur later in development, consistent with the critical time window in late childhood when dystonia symptoms usually emerge in DYT1 patients. The similarities between Torsin1 and human TorsinA in domain organization, expression pattern, and cellular localization suggest that the zebrafish will provide a useful model to understand the neuronal functions of Torsins in vivo
Acute Intermittent Porphyria: Pathophysiology and Treatment
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90337/1/j.1875-9114.1984.tb03340.x.pd
Temporal Dysynchrony in brain connectivity gene expression following hypoxia
List of K-means cluster analysis of connectivity genes across development during hypoxia. Relative log2 fold change compared to the developmental average is provided. (XLSX 197 kb
Approach for Predicting Production Scenarios Focused on Cross Impact Analysis
AbstractOne of the most consistent challenges in business is anticipating what the future holds and what impact it may have on current production systems. The scenario technique is a well-established method for developing and forecasting multiple future development paths for companies. However, this method is mostly employed to develop and to support strategic long-term decisions. The core idea of the approach introduced in this paper is to convey the future impact of today's decisions on production systems to employees involved in production planning processes. With the help of immersive visualization, performed in virtual reality (VR) systems, planning participants can perceive how the factory must adapt to fit future demands.In this paper, the focus is on the fourth phase of the scenario technique – so called scenario development – and, in particular, the cross impact analysis. With this methodology, the interrelations, or cross impacts of the different basic elements are determined. The cross impact analysis results serve as a basis for the development of a standardized tool that can be used to create probable production scenarios out of given production systems. This standardized tool will facilitate the usage of the scenario technique for factory planning projects, as it focuses the immense diversity of future uncertainties companies are faced with on the factory level
δ-Aminolevulinic acid cytotoxic effects on human hepatocarcinoma cell lines
BACKGROUND: Acute Intermittent Porphyria is a genetic disorder of heme metabolism, characterized by increased levels of porphyrin precursors, delta-aminolevulinic acid (ALA) and porphobilinogen (PBG). ALA has been reported to generate reactive oxygen species and to cause oxidative damage to proteins, subcellular structures and DNA. It is known that oxidative stress can induce apoptosis. The aim of this work was to study the cytotoxic effect of ALA on two hepatocarcinoma cell lines. RESULTS: We have determined the impact of ALA on HEP G2 and HEP 3B hepatocarcinoma cell lines survival as measured by the MTT assay. ALA proved to be cytotoxic in both cell lines however; HEP G2 was more sensitive to ALA than HEP 3B. Addition of hemin or glucose diminished ALA cytotoxicity in HEP G2 cells; instead it was enhanced in HEP 3B cells. Because apoptosis is usually associated with DNA fragmentation, the DNA of ALA treated and untreated cells were analyzed. The characteristic pattern of DNA fragmentation ladders was observed in ALA treated cells. To elucidate the mechanisms of ALA induced apoptosis, we examined its effect on p53 expression. No changes in p53 mRNA levels were observed after exposure of both cell lines to ALA for 24 h. CDK2 and CDK4 protein levels were reduced after ALA treatment at physiological concentrations
Clinical profile and treatment of infantile spasms using vigabatrin and ACTH - a developing country perspective
Background: Infantile spasms represent a serious epileptic syndrome that occurs in the early infantile age. ACTH and Vigabatrin are actively investigated drugs in its treatment. This study describes the comparison of their efficacy in a large series of Patients with infantile spasms from Pakistan. Methods: All Patients with infantile spasms who presented to Aga Khan University Hospital, Karachi, Pakistan from January, 2006 to April, 2008 were included in this study. Inclusion criteria were clinical symptoms of infantile spasms, hypsarrythmia or modified hyparrythmia on electroencephalography, at least six months of follow-up period and receipt of any of the two drugs mentioned above. The type of drug distribution was random according to the availability, cost and ease of administration. Results: Fifty six cases fulfilled the inclusion criteria. 62.5% were males. Mean age at onset of seizures was 5 +/- 1.4 months. Fifty two (92.8%) Patients demonstrated hypsarrythmia on electroencephalography. 64.3% cases were identified as symptomatic while 19.6% were cryptogenic and 16.1% were idiopathic. Eighteen Patients received ACTH while 38 Patients received Vigabatrin as first line therapy. Initial response to first line therapy was similar (50% for ACTH and 55.3% for Vigabatrin). Overall, the symptomatic and idiopathic groups responded better to Vigabatrin. The relapse rate was higher for ACTH as compared to Vigabatrin (55.5% vs. 33.3%) when considering the first line therapy. Four Patients evolved to Lennox-Gastaut variant, all of these Patients had initially received Vigabatrin and then ACTH. Conclusion: Vigabatrin and ACTH showed no significant difference in the initial treatment of infantile spasms. However, Patients receiving ACTH were 1.2 times more likely to relapse as compared to the Patients receiving Vigabatrin when considering monotherapy. We suggest that Vigabatrin should be the initial drug of choice in Patients presenting with infantile spasms. However, larger studies from developing countries are required to validate the therapeutic trends observed in this study
Trends in Resource Utilization by Children with Neurological Impairment in the United States Inpatient Health Care System: A Repeat Cross-Sectional Study
Jay Berry and colleagues report findings from an analysis of hospitalization data in the US, examining the proportion of inpatient resources attributable to care for children with neurological impairment
Predicting In Vivo Anti-Hepatofibrotic Drug Efficacy Based on In Vitro High-Content Analysis
Background/Aims
Many anti-fibrotic drugs with high in vitro efficacies fail to produce significant effects in vivo. The aim of this work is to use a statistical approach to design a numerical predictor that correlates better with in vivo outcomes.
Methods
High-content analysis (HCA) was performed with 49 drugs on hepatic stellate cells (HSCs) LX-2 stained with 10 fibrotic markers. ~0.3 billion feature values from all cells in >150,000 images were quantified to reflect the drug effects. A systematic literature search on the in vivo effects of all 49 drugs on hepatofibrotic rats yields 28 papers with histological scores. The in vivo and in vitro datasets were used to compute a single efficacy predictor (Epredict).
Results
We used in vivo data from one context (CCl4 rats with drug treatments) to optimize the computation of Epredict. This optimized relationship was independently validated using in vivo data from two different contexts (treatment of DMN rats and prevention of CCl4 induction). A linear in vitro-in vivo correlation was consistently observed in all the three contexts. We used Epredict values to cluster drugs according to efficacy; and found that high-efficacy drugs tended to target proliferation, apoptosis and contractility of HSCs.
Conclusions
The Epredict statistic, based on a prioritized combination of in vitro features, provides a better correlation between in vitro and in vivo drug response than any of the traditional in vitro markers considered.Institute of Bioengineering and Nanotechnology (Singapore)Singapore. Biomedical Research CouncilSingapore. Agency for Science, Technology and ResearchSingapore-MIT Alliance for Research and Technology Center (C-185-000-033-531)Janssen Cilag (R-185-000-182-592)Singapore-MIT Alliance Computational and Systems Biology Flagship Project (C-382-641-001-091)Mechanobiology Institute, Singapore (R-714-001-003-271
- …
