5,515 research outputs found

    On the Photorefractive Gunn Effect

    Full text link
    We present and numerically solve a model of the photorefractive Gunn effect. We find that high field domains can be triggered by phase-locked interference fringes, as it has been recently predicted on the basis of linear stability considerations. Since the Gunn effect is intrinsically nonlinear, we find that such considerations give at best order-of-magnitude estimations of the parameters critical to the photorefractive Gunn effect. The response of the system is much more complex including multiple wave shedding from the injecting contact, wave suppression and chaos with spatial structure.Comment: Revtex, 8 pag., 4 fig. (jpg), submit to Physical Review

    Chaos in resonant-tunneling superlattices

    Full text link
    Spatio-temporal chaos is predicted to occur in n-doped semiconductor superlattices with sequential resonant tunneling as their main charge transport mechanism. Under dc voltage bias, undamped time-dependent oscillations of the current (due to the motion and recycling of electric field domain walls) have been observed in recent experiments. Chaos is the result of forcing this natural oscillation by means of an appropriate external microwave signal.Comment: 3 pages, LaTex, RevTex, 3 uuencoded figures (1.2M) are available upon request from [email protected], to appear in Phys.Rev.

    Vacuum stability with spontaneous violation of lepton number

    Get PDF
    The vacuum of the Standard Model is known to be unstable for the measured values of the top and Higgs masses. Here we show how vacuum stability can be achieved naturally if lepton number is violated spontaneously at the TeV scale. More precise Higgs measurements in the next LHC run should provide a crucial test of our symmetry breaking scenario. In addition, these schemes typically lead to enhanced rates for processes involving lepton flavour violation .Comment: 9 pages, 4+2 figures; some references added, some textual modifications: 2 figures added, appendices added. Results unchanged. Matches published versio

    Flavour-symmetric type-II Dirac neutrino seesaw mechanism

    Full text link
    We propose a Standard Model extension with underlying A4 flavour symmetry where small Dirac neutrino masses arise from a Type-II seesaw mechanism. The model predicts the "golden" flavour-dependent bottom-tau mass relation, requires an inverted neutrino mass ordering and non-maximal atmospheric mixing angle. Using the latest neutrino oscillation global fit we derive restrictions on the oscillation parameters, such as a correlation between Dirac CP phase and the lightest neutrino mass.Comment: 10 pages, 4 figure

    Chaotic motion of space charge wavefronts in semiconductors under time-independent voltage bias

    Full text link
    A standard drift-diffusion model of space charge wave propagation in semiconductors has been studied numerically and analytically under dc voltage bias. For sufficiently long samples, appropriate contact resistivity and applied voltage - such that the sample is biased in a regime of negative differential resistance - we find chaos in the propagation of nonlinear fronts (charge monopoles of alternating sign) of electric field. The chaos is always low-dimensional, but has a complex spatial structure; this behavior can be interpreted using a finite dimensional asymptotic model in which the front (charge monopole) positions and the electrical current are the only dynamical variables.Comment: 12 pages, 8 figure

    Universality of the Gunn effect: self-sustained oscillations mediated by solitary waves

    Get PDF
    The Gunn effect consists of time-periodic oscillations of the current flowing through an external purely resistive circuit mediated by solitary wave dynamics of the electric field on an attached appropriate semiconductor. By means of a new asymptotic analysis, it is argued that Gunn-like behavior occurs in specific classes of model equations. As an illustration, an example related to the constrained Cahn-Allen equation is analyzed.Comment: 4 pages,3 Post-Script figure

    Two dimensional soliton in tumor induced angiogenesis

    Get PDF
    Ensemble averages of a stochastic model show that, after a formation stage, the tips of active blood vessels in an angiogenic network form a moving two dimensional stable diffusive soliton, which advances toward sources of growth factor. Here we use methods of multiple scales to find the diffusive soliton as a solution of a deterministic equation for the mean density of active endothelial cells tips. We characterize the diffusive soliton shape in a general geometry, and find that its vector velocity and the trajectory of its center of mass along curvilinear coordinates solve appropriate collective coordinate equations. The vessel tip density predicted by the soliton compares well with that obtained by ensemble averages of simulations of the stochastic model.Comment: 35 pages, 10 figures, to appear in JSTA

    Dynamics of Electric Field Domains and Oscillations of the Photocurrent in a Simple Superlattice Model

    Full text link
    A discrete model is introduced to account for the time-periodic oscillations of the photocurrent in a superlattice observed by Kwok et al, in an undoped 40 period AlAs/GaAs superlattice. Basic ingredients are an effective negative differential resistance due to the sequential resonant tunneling of the photoexcited carriers through the potential barriers, and a rate equation for the holes that incorporates photogeneration and recombination. The photoexciting laser acts as a damping factor ending the oscillations when its power is large enough. The model explains: (i) the known oscillatory static I-V characteristic curve through the formation of a domain wall connecting high and low electric field domains, and (ii) the photocurrent and photoluminescence time-dependent oscillations after the domain wall is formed. In our model, they arise from the combined motion of the wall and the shift of the values of the electric field at the domains. Up to a certain value of the photoexcitation, the non-uniform field profile with two domains turns out to be metastable: after the photocurrent oscillations have ceased, the field profile slowly relaxes toward the uniform stationary solution (which is reached on a much longer time scale). Multiple stability of stationary states and hysteresis are also found. An interpretation of the oscillations in the photoluminescence spectrum is also given.Comment: 34 pages, REVTeX 3.0, 10 figures upon request, MA/UC3M/07/9

    A moment based approach to the dynamical solution of the Kuramoto model

    Get PDF
    We examine the dynamics of the Kuramoto model with a new analytical approach. By defining an appropriate set of moments the dynamical equations can be exactly closed. We discuss some applications of the formalism like the existence of an effective Hamiltonian for the dynamics. We also show how this approach can be used to numerically investigate the dynamical behavior of the model without finite size effects.Comment: 6 pages, 5 figures, Revtex file, to appear in J. Phys.
    corecore