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Universality of the Gunn effect: Self-sustained oscillations mediated by solitary waves
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The Gunn effect consists of time-periodic oscillations of the current flowing through an external purely
resistive circuit mediated by solitary wave dynamics of the electric field on an attached appropriate semicon-
ductor. By means of an asymptotic analysis, it is argued that Gunn-like behavior occurs in specific classes of
model equations. As an illustration, an example related to the constrained Cahn-Allen equation is analyzed.
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PACS number~s!: 03.40.Kf, 05.60.1w, 07.50.Ek
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In semiconductors where the local current density a
function of the local electric field isN shaped, the Gunn
effect is a ubiquitous phenomenon@1–5#. The Gunn effect
@6# consists of time-periodic oscillations of the electric cu
rent flowing through an external purely resistive circuit
tached to a semiconductor sample subject to dc voltage b
The current oscillations correspond to the generation, o
dimensional motion, and annihilation of solitary waves of t
electric field inside the semiconductor. Besides this, the
set of the Gunn effect can be quite interesting, as the cur
may display intermittency accompanied by spatiotempo
structures of the electric field inside the semiconductor@7#.
Recently the onset of the Gunn instability was analyzed
singular perturbation methods which provide the govern
amplitude equation for long semiconductors@8#. Gunn-like
phenomena may also explain the experimentally obser
self-sustained oscillations of the current in doped wea
coupled superlattices@9# whose dominant transport mech
nism is resonant tunneling between adjacent quantum w
@10#. In these cases, the oscillations are due to recycling
electric-field wave fronts~charge monopoles! instead of soli-
tary waves@10#. The difference in the type of waves may b
tracked to the boundary condition at the injecting cont
@11,12#. Gunn-like phenomena have also been numeric
observed in a driven diffusive lattice-gas model of hopp
conductivity @13#.

A natural question that comes to mind in relation w
these phenomena concerns theiruniversality: Given that the
Gunn instability appears in widely different semiconduc
systems and models,what are the features a given model h
to have in order to present the Gunn instability? Notice that
the Gunn effect is in principle a nonequilibrium phenomen
which may happen far from any bifurcation points. Thus t
question of its universality may not be related to linearizat
about fixed points of a renormalization transformation. Ne
ertheless an asymptotic analysis allows us to unders
deeply the Gunn effect and to try to give a precise mean
to the notion of universality far from equilibrium. This pap
tries to give an answer to the universality question, an
also puts the Gunn instability into perspective by compar
it to phenomena occurring in other pattern forming syste
@14#.
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From the study of the Gunn instability in semiconduct
models, we can extract the following common features t
seem to be necessary for its occurrence.

~1! The model should be able to support solitary wav
moving in aprivileged direction on a large enough spati
support.

~2! It should include an integral~over space! constraint.
~3! It should have appropriate boundary conditions~Di-

richlet, Neumann, mixed, etc.! which render unstable the sta
tionary solutions for certain values of the integral constra

We shall illustrate these points by constructing a sim
model that displays the Gunn instability:

]u

]t
1K

]u

]x
5

]2u

]x2
1J2g~u!, ~1!

1

L E
0

L

udx5f. ~2!

In these equations the unknowns areu(x,t) and J(t), with
t.0 and 0,x,L; g(u) is a function having a local maxi
mum gM5g(uM) followed by a local minimum
gm5g(um) for u.0 (0,uM,um), while K andf are non-
negative parameters. Equations~1! and ~2! are to be solved
with an appropriate initial condition foru(x,0)>0 and Di-
richlet boundary conditions:

u~0,t !5u~L,t !5rJ~ t !,
gm

um
,

1

r
,

gM

uM
. ~3!

In semiconductor modelsu, J, and fL correspond to the
electric field, total current density and dc voltage bias,
spectively. Boundary conditions~3! correspond to Ohm’s
law relating the electric field and the current at the injecti
and receiving contacts.~We assume that both contacts ha
identical resistivity r.0 for simplicity.! Other boundary
conditions ~fixed u, mixed boundary conditions! do not
qualitatively change the character of the solutions@1,11#.

The model represented by Eqs.~1! and~2! with K50 and
zero-flux boundary conditions instead of Eq.~3! is known as
the constrained Cahn-Allen equation, and it was recently
3628 © 1997 The American Physical Society
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56 3629UNIVERSALITY OF THE GUNN EFFECT: SELF- . . .
troduced by Rubinstein and Sternberg as a nonlocal reac
diffusion model of nucleation akin to the mass-conserv
fourth-order Cahn-Hilliard equation@15,16#. Equation ~1!
with a fixed constantJ andK50 is the well-known bistable
Fisher-Kolmogorov-Petrovskiıˇ-Piskunov ~FKPP! equation,
which includes among its possible solutions a variety of tr
eling fronts and pulses~solitary waves! moving on an infinite
one-dimensional spatial support@17,14#. The pulses of the
FKPP equation are unstable solutions: they either shrink
expand when an infinitesimal disturbance is added@17#. The
global integral constraint~2! and Dirichlet boundary condi
tions ~3! convert the FKPP equation into a model very sim
lar to the typical semiconductor ones: the constrained Ca
Allen equation. This model does not present the Gu
instability if K50 because thex↔2x symmetry implies no
preferred direction of motion for traveling waves. A larg
enough nonzero convective termK.0 breaks thex↔2x
symmetry, and it favors waves moving from left to right. T
resulting model satisfies conditions~1!–~3! above, and it dis-
plays the Gunn effect; see Fig. 1. It may be observed that
present model is also related to Kroemer’s model of
Gunn effect inn type GaAs@2#: we just change the convec
tion coefficient to a constantK in Ampère’s law and set the
diffusivity equal to 1 in the dimensionless Kroemer’s mod
studied in Ref.@12#. These changes exclude the straightf
ward extension of our previous asymptotic analysis, as
cannot use the shock waves and particular solutions spe

FIG. 1. ~a! The function J(t) for g(u)5100(u20.2)(u
20.4)(u20.6). Parameter values areK52, L5100, r51.5, and
f50.32. ~b! The corresponding profiles ofu(x,t) evaluated at the
times marked in part~a! of this figure.
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of Kroemer’s model to describe the Gunn effect@12#.
To understand these results, we shall assume

e51/L!1. Then it is convenient to rewrite Eqs.~1! and ~2!
in terms of the ‘‘slow’’ variabless5et andy5ex. The re-
sult is

e
]u

]s
1eK

]u

]y
2e2

]2u

]y2 5J2g~u!, ~4!

E
0

1

u dy5f. ~5!

In the limit e→0 the solutions of this system are piecewi
constant: on most of they interval u is equal to one or
another of the zeros ofg(u)2J, separated by transition lay
ers that connect them. Aty50 and 1 there are boundar
layers~quasistationary most of the time!, which we will call
injecting and receiving layers, respectively. Let us assum
that uM,f,um , and denote byu1(J),u2(J),u3(J) the
three zeros ofg(u)2J. Let the initial profileu(y,0) satisfy-
ing Eq. ~5! be a square bump u5u3(J) for
Y1(0),y,Y2(0) andu5u1(J) elsewhere, plus terms of or
dere, as in the time marked by Eq.~1! in Fig. 1~b!. Located
at y5Y1 andy5Y2 , Y1,Y2 , there are sharp wavefronts o
width O(e) connectingu5u1(J) andu5u3(J). This initial
profile will naturally evolve into the Gunn effect as tim
goes on~see below!. The initial value ofJ follows from Eq.
~5!:

f5u1~J!1@u3~J!2u1~J!#~Y22Y1!1O~e!. ~6!

The boundary layers and the fronts connectingu1(J) and
u3(J) are built from trajectories of the phase plane:

du

dj
5v,

dv
dj

5mv1g~u!2J, ~7!

where j5e21@y2Yi(s)#, c5dYi /ds, and m5K2c. The
boundary layers are separatrices connecting the vertical
u5rJ in the phase plane (u,v) to the saddles (u1,0) or
(u3,0) for c50: u(x)→ui(J) asx→` andu(x)→ui(J) as
(x2L)→2` ~i 51 and 3! are the matching conditions. Fo
each fixed value ofJ betweengm and gM we can find a
unique value c1(J) such that u(2`)5u1(J) and
u(`)5u3(J) @corresponding to a heteroclinic orbit connec
ing (u1,0) to (u3,0) with v.0# and a unique valuec2(J)
such thatu(2`)5u3(J) and u(`)5u1(J) @a heteroclinic
orbit connecting (u3,0) to (u1,0) with v,0#. The functions
c6(J) are depicted in Fig. 2. They intersect whenJ5J*
given by

J* 5
1

u32u1
E

u1

u3
g~u!du, c65K. ~8!

Starting ats50, the frontsYi(s) move with speeds

dY1

ds
5c1~J!,

dY2

ds
5c2~J!, ~9!
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whereas their positions are related to the biasf through Eq.
~6!. We find an equation forJ by differentiating Eq.~6! and
then inserting Eq.~9! into the result:

dJ

ds
5A~J!@c1~J!2c2~J!#, ~10!

A5
~u32u1!2

f2u1

g38
1

u32f

g18

.0, ~11!

wheregi8(J)[g8(ui), and we used thatg„ui(J)…5J implies
]ui /]J51/g8(ui). This is a simple equation forJ, demon-
strating thatJ tends toJ* exponentially fast. Notice that thi
is a very simple explanation of the well-known observati
that a pulse detached from the boundaries moves at con
speed andJ, given by the equal area rule~8!, @1#.

After a certain time, the wave frontY2 reaches 1, and we
have a new stage governed by Eq.~6! with Y251 andY1
given by Eq. ~9!. The equation for J becomes
dJ/ds5Ac1.0, and its solution increases@compareJ andu
at time~2! in Fig. 1# until it surpasses the valueJc such that
u2(J)5rJ. ~At Jc , @]u/]x#x50 changes sign and the qua
sistationary injecting layer becomes unstable! @12#. Let s1 be
the earliest time at whichJ5Jc . After s5s1 , the profile of
u changes within the boundary layer aty50: this injecting
layer becomes unstable, and it sheds a new wave duri
fast stage described by the time scalet5(s2s1)/e. To find
what happens next we need to perform a more complica
analysis keepingO(e) terms in the outer~bulk! expansion of
u andJ, and just the leading-order term in all inner expa
sions~boundary layers and wave fronts!. This calculation has
been performed in detail for a semiconductor model@18#. It
can be shown that the shedding

FIG. 2. The functionsc6(J) for K52, andg(u) as in Fig. 1.
We marked the valueJ5J† for which 2c1(J)5c2(J).
ant
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d
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of a new wave from the injecting layer is governed by t
following semi-infinite problem for x.0, 2`,t,`:
u(x,t) ~far from the old wave dying aty51! solves Eq.~1!
andu(0,t)5rJ(t;e), with J(t;e)5Jc1eJ(1)(t),

J~1!~t !5h8~t!1ah~t!2gE
2`

t

e2b~t2t !h~ t !dt, ~12!

h~t!5~u32u1!c1~t2t0!2E
0

`

@u~x,t!2u1#dx ~13!

~in this equation all functions ofJ are calculated atJ5Jc ;
t0 is a constant anda, b, andg are positive parameters! @18#,
and the following matching condition on an appropria
overlap domain: u(x,t)2u0„x;J(s)…!1, as t→2`,
s→s12. Here u0„x;J(s)… is the quasistationary injecting
layer solution of Eq. ~7! with m5K such that
u0„0;J(s)…5rJ(s) and u0„`;J(s)…5u1(J(s)) for s,s1 ,
J(s1)5Jc . The functionh(t) is the area lost due to th
motion of the old front during the timet minus the instanta-
neous excess area under the injecting layer.

The solution of the previous semi-infinite problem reve
the formation, growth, and motion of a new pulse in t
injecting layer, driven byh(t) through the effective exces
current ~12!. This process ends when the new pulse
bounded by two well-formed wave fronts~detached from the
injecting layer! which are located atY3 andY4 , Y3,Y4 @see
theu profile at time~3! in Fig. 1~b!, in whichY3 andY4 have
already moved from their initial positionsO(e ln e) at the
beginning of this stage#. It may be seen that the injectin
layer becomes unstable and sheds a new wave when its w
reaches a critical sizeDy5O(e ln e) @18#.

If f is large enough, we have a stage where the old w
front located atY1,1 coexists with the newly formed puls
bounded by the two wave fronts located atY3 andY4 :

f5u1~J!1@u3~J!2u1~J!#~12Y11Y42Y3!1O~e!.
~14!

Differentiating this equation and using thatY1 andY3 move
with speedc1 whereasY4 moves with speedc2 , we obtain
dJ/ds5A(2c12c2). Starting fromJc , J decreases furthe
to J† @the zero of (2c12c2)# if 2c1(Jc),c2(Jc) ~the
stable case withJc.J† in Fig. 2!. After the old wave reaches
y51, we again obtain Eqs.~6!–~10! and recover the initial
situation. Thus a full period of the Gunn oscillation is d
scribed; see Fig. 1. On the other hand, if 2c1(Jc).c2(Jc)
(J* ,Jc,J†), J increases after the formation of the ne
pulse, and it is possible for the injecting layer to shed m
waves into the bulk, as shown by the numerical simulatio
of Fig. 3. How many waves are shed depends both on
value ofJc ~and therefore on the injecting resistivityr! and
on the length L. A rough estimation would give
(n11)c1(Jc)5nc2(Jc) ase→0 for the numbern of shed
waves. This shedding mechanism seems to have the effe
breaking the spatial coherence of the sample, which m
lead to complex spatiotemporal phenomena~intermittencies
with a varying number of pulses present in the sample
different times!. The unstable case will be further analyzed
the near future.
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In conclusion, we have investigated what are the m
features that a given model should have in order to pre
the Gunn effect. These features are demonstrated by stud
a simple model by means of a general asymptotic anal
corroborated by direct numerical simulations. As a result
Gunn effect is reduced to solving a sequence of very sim
problems~one equation forJ each time! plus a canonical
problem for shedding new pulses. Our asymptotic analy
explains qualitatively and quantitatively the formation, m
tion and annihilation of pulses in the Gunn effect. This wo
sheds light on several puzzling aspects of the Gunn osc
tions ~see the chapter on open problems in Ref.@19#!: ~i!
Why do pulses move with the well-known equal-area-r
velocity at constantJ when they are far from the contac
@the corresponding current is a stable equilibrium of E

FIG. 3. ~a! Density plot for u(x,t) with r54, f50.3 and
g(u) as in Fig. 1 ~lighter color means largeru). Here multiple
shedding of pulses occurs at the injecting layer: two pulses
formed during each period. The second shed reaches and over
the first one.~b! The corresponding profile ofJ(t).
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~10!#? ~ii ! How does the wave speed change when it arri
to the receiving contact?~iii ! How are new waves created a
the injecting contact? In addition, we have described an
stability mechanism consisting of multiple pulse shedd
during each oscillation ofJ, which appears for appropriat
values of the boundary parameters at the injecting cont
Similar work has been performed in diverse semiconduc
models: Gunn oscillations in ultrapure closely compensa
p-type Ge @18#, Kroemer’s model of Gunn oscillations in
bulk n-type GaAs @20#, and slow oscillations in semi
insulating GaAs @21#. A modification of the asymptotic
method presented here describes the charge monopole
cling responsible for the self-oscillations inn-doped weakly
coupled superlattices@22#. Irrespective of the physica
mechanism responsible for the existence of the wave fr
and pulses, our asymptotic method describes the Gunn o
lations in these models. The model presented here per
illustrates in the simplest way what the method consists
~i! find the equations and boundary conditions which char
terize the shape of the wave fronts and their speed as f
tions of the current densityJ. ~ii ! Derive the equations which
determineJ as a function of the slow time scale dependi
on the number of wave fronts present in the sample. T
field profile follows adiabatically the evolution ofJ. ~iii !
Add the semiinfinite problems responsible for wave shedd
at the contacts. The solution and matching of these probl
yields an approximation of the Gunn effect in the giv
model. Of course, solving some of these steps may be
itself a rather complicated technical problem for particu
models requiring special asymptotics@21#.
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