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Universality of the Gunn effect: Self-sustained oscillations mediated by solitary waves
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The Gunn effect consists of time-periodic oscillations of the current flowing through an external purely
resistive circuit mediated by solitary wave dynamics of the electric field on an attached appropriate semicon-
ductor. By means of an asymptotic analysis, it is argued that Gunn-like behavior occurs in specific classes of
model equations. As an illustration, an example related to the constrained Cahn-Allen equation is analyzed.
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In semiconductors where the local current density as a From the study of the Gunn instability in semiconductor
function of the local electric field iN shaped, the Gunn models, we can extract the following common features that
effect is a ubiquitous phenomengh-5]. The Gunn effect Seem to be necessary for its occurrence.

[6] consists of time-periodic oscillations of the electric cur- (1) The model should be able to support solitary waves
rent flowing through an external purely resistive circuit at-moving in aprivileged direction on a large enough spatial
tached to a semiconductor sample subject to dc voltage bia§UPPOrt. _ _ _

The current oscillations correspond to the generation, one- (2) It should include an integrdbver spacgconstraint.
dimensional motion, and annihilation of solitary waves of the ~ (3) It should have appropriate boundary conditids-
electric field inside the semiconductor. Besides this, the ontichlet, Neumann, mixed, efowhich render unstable the sta-
set of the Gunn effect can be quite interesting, as the currerionary solutions for certain values of the integral constraint.
may display intermittency accompanied by spatiotemporal We shall |_Ilustrate these points by_constructlng a simple
structures of the electric field inside the semiconduf@r  Model that displays the Gunn instability:

Recently the onset of the Gunn instability was analyzed by

singular perturbation methods which provide the governing Ju u

amplitude equation for long semiconductd8j. Gunn-like EJFK X EJFJ_Q(U)’ (@)

phenomena may also explain the experimentally observed

self-sustained oscillations of the current in doped weakly 1 (L

coupled superlatticef®] whose dominant transport mecha- T j udx= ¢. 2
0

nism is resonant tunneling between adjacent quantum wells

[10]. In these cases, the oscillations are due to recycling of . .

electric-field wave frontécharge monopolgsnstead of soli- [N these equations the unknowns arf,t) and J(t), with

tary waveq 10]. The difference in the type of waves may be =0 and 0<x<L; g(u) is a function having a local maxi-

tracked to the boundary condition at the injecting contact®Um 9gu=9(uy) followed by a local minimum

[11,17. Gunn-like phenomena have also been numericallym=9(Um) for u>0 (0<uy<ur), while K and ¢ are non-

observed in a driven diffusive lattice-gas model of hoppingh€gative parameters. Equatiofis and (2) are to be solved

conductivity[13]. with an appropriate initial condition fon(x,0)=0 and Di-
A natural question that comes to mind in relation with fichlet boundary conditions:

these phenomena concerns thaiiversality Given that the g 1 g

Gunn instability appears in widely different semiconductor _ _ Im__-+ _dIM

systems and modelghat are the features a given model has u@H=u(L,H=pJ(v), um<p<uwI ' ©

to have in order to present the Gunn instabifitiotice that

the Gunn effect is in principle a nonequilibrium phenomenonin semiconductor models, J, and ¢L correspond to the

which may happen far from any bifurcation points. Thus theelectric field, total current density and dc voltage bias, re-

guestion of its universality may not be related to linearizationspectively. Boundary conditiong3) correspond to Ohm'’s

about fixed points of a renormalization transformation. Nev-law relating the electric field and the current at the injecting

ertheless an asymptotic analysis allows us to understar@hd receiving contact$WWe assume that both contacts have

deeply the Gunn effect and to try to give a precise meaningdentical resistivity p>0 for simplicity) Other boundary

to the notion of universality far from equilibrium. This paper conditions (fixed u, mixed boundary conditionsdo not

tries to give an answer to the universality question, and igualitatively change the character of the solutiphd 1].

also puts the Gunn instability into perspective by comparing The model represented by E¢$) and(2) with K=0 and

it to phenomena occurring in other pattern forming systemsgero-flux boundary conditions instead of E8) is known as

[14]. the constrained Cahn-Allen equation, and it was recently in-
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03 T of Kroemer’'s model to describe the Gunn effgtg].

To understand these results, we shall assume that
e=1/L<1. Then it is convenient to rewrite Eg&l) and(2)
in terms of the “slow” variabless= et andy=ex. The re-

sult is
- au+K(9u zazu_J 4
€ tK gy 2T g(u), 4
1
fou dy= ¢. (5)

-0.1 L
100 150 200

In the limit e—0 the solutions of this system are piecewise
constant: on most of thg interval u is equal to one or
another of the zeros af(u) —J, separated by transition lay-
ers that connect them. At=0 and 1 there are boundary
layers(quasistationary most of the timewhich we will call
injecting and receiving layersrespectively. Let us assume
that uy < @<u,, and denote by, (J)<u,(J)<uz(J) the
three zeros of(u) —J. Let the initial profileu(y,0) satisfy-
ing Eq. (5) be a square bumpu=u3(J) for
Y1(0)<y<Y,(0) andu=u,(J) elsewhere, plus terms of or-
dere, as in the time marked by E¢l) in Fig. 1(b). Located
aty=Y, andy=Y,, Y;<Y,, there are sharp wavefronts of
width O(€) connectingu=u;(J) andu=u3(J). This initial
0.0 o m - = %0 profile will naturally evolve into the Gunn effect as time

goes on(see below. The initial value ofJ follows from Eq.
(5):
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FIG. 1. (a The function J(t) for g(u)=100u—0.2)(u
—0.4)(u—0.6). Parameter values ake=2, L=100, p=1.5, and U D +TUAD = U (DTY—Y)+0 6
#=0.32. (b) The corresponding profiles af(x,t) evaluated at the ¢=ur()+[Us() ~ur(D(¥2=Y) (). ©®

ti ked i f this fi . .
imes marked in parta) of this figure The boundary layers and the fronts connectin¢J) and

) ) ~ug(J) are built from trajectories of the phase plane:
troduced by Rubinstein and Sternberg as a nonlocal reaction-

diffusion model of nucleation akin to the mass-conserving du do

fourth-order Cahn-Hilliard equatiof15,16. Equation (1) d_gzv’ d—§:Mv+g(u)—J, @

with a fixed constand andK =0 is the well-known bistable

Fisher-Kolmogorov-PetrovskRiskunov (FKPP) equation, 1

which includes among its possible solutions a variety of travWhere §=e “[y—Yi(s)], c=dY;/ds, and u=K—c. The
eling fronts and pulseolitary wavesmoving on an infinite boundary layers are separatrices connecting the vertical line
one-dimensional spatial suppdt7,14. The pulses of the U=pJ in the phase planeu(v) to the saddles(;,0) or
FKPP equation are unstable solutions: they either shrink ofus.0) for c=0: u(x)—u;(J) asx—= andu(x)—u;(J) as
expand when an infinitesimal disturbance is addeg. The  (X—L)——< (i=1 and 3 are the matching conditions. For
global integral constrain2) and Dirichlet boundary condi- €ach fixed value ofl betweeng,, and gy we can find a
tions (3) convert the FKPP equation into a model very simi- unique value c,(J) such that u(—«)=uy(J) and

lar to the typical semiconductor ones: the constrained Cahri4(>) =uz(J) [corresponding to a heteroclinic orbit connect-
Allen equation. This model does not present the Gunring (ui,0) to (u3,0) with v>0] and a unique value (J)
instability if K=0 because the— —x symmetry implies no  such thatu(—o)=u3(J) and u(>)=u,(J) [a heteroclinic
preferred direction of motion for traveling waves. A large orbit connecting {3,0) to (u;,0) with v<<0]. The functions
enough nonzero convective terki>0 breaks thex<»—x  €=(J) are depicted in Fig. 2. They intersect whér-J*
symmetry, and it favors waves moving from left to right. The given by

resulting model satisfies conditiofis)—(3) above, and it dis-

plays the Gunn effect; see Fig. 1. It may be observed that the 1 u3

present model is also related to Kroemer's model of the J*= Ua—u, Ju g(udu, c.=K. ®
Gunn effect inn type GaAs[2]: we just change the convec- !
tion coefficient to a constarn€ in Ampere’s law and set the
diffusivity equal to 1 in the dimensionless Kroemer’s model
studied in Ref[12]. These changes exclude the straightfor-
ward extension of our previous asymptotic analysis, as we
cannot use the shock waves and particular solutions specific

Starting ats=0, the frontsY;(s) move with speeds

dv, dy,

E:C+(‘])’ E:C’(J)’ 9
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FIG. 2. The functiong.(J) for K=2, andg(u) as in Fig. 1.
We marked the valugd=J" for which 2c, (J)=c_(J).

whereas their positions are related to the hjehrough Eq.
(6). We find an equation fod by differentiating Eq.(6) and
then inserting Eq(9) into the result:

dJ_
@—A(J)[C+(J)—07(J)], (10
_ (uz—uy)?
A= ¢—u1+u3—¢>0’ (11)
93 9;

whereg; (J)=g’(u;), and we used thaj(u;(J))=J implies
du;1dJ=1/g’ (u;). This is a simple equation faf, demon-
strating thatl tends toJ* exponentially fast. Notice that this
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of a new wave from the injecting layer is governed by the
following semi-infinite problem forx>0, —oo<r<oo:
u(x,7) (far from the old wave dying ag=1) solves Eq(1)
andu(0,7)=pJ(r;e), with J(7;€)=J.+ eID(7),

ID(R=h' (1) + ah(r)— yJT e A Un(tydt, (12)

h(7) = (U= Uy)C. (7— 7o) f:[u<x,r>—uﬂdx 13

(in this equation all functions o are calculated ai=J;;

7o iS a constant and, 3, and+y are positive parametergl 8],
and the following matching condition on an appropriate
overlap domain: u(x,7) —up(x;J(s))<1l, as 7— —oo,
s—s;—. Here uyp(x;J(s)) is the quasistationary injecting
layer solution of Eq. (7) with wu=K such that
Ug(0;J3(s))=pJ(s) and ug(e;J(s))=u4(J(s)) for s<sy,
J(s1)=J;. The functionh(7) is the area lost due to the
motion of the old front during the time minus the instanta-
neous excess area under the injecting layer.

The solution of the previous semi-infinite problem reveals
the formation, growth, and motion of a new pulse in the
injecting layer, driven byh(7) through the effective excess
current (12). This process ends when the new pulse is
bounded by two well-formed wave fronfdetached from the
injecting layey which are located at; andY,, Y3<Y, [see
theu profile at time(3) in Fig. 1(b), in whichY; andY, have
already moved from their initial position®(e In €) at the
beginning of this stage It may be seen that the injecting
layer becomes unstable and sheds a new wave when its width
reaches a critical sizaAy=0(e In €) [18].

If ¢ is large enough, we have a stage where the old wave
front located afy ;<1 coexists with the newly formed pulse
bounded by the two wave fronts locatedYatand Y ,:

¢=u1(J) +[u3(J) —us (A=Y, +Y,—Y3)+O(e).
(14)

Differentiating this equation and using théi andY; move

is a very simple explanation of the well-known observationwith speedc, whereasY, moves with speed_, we obtain
that a pulse detached from the boundaries moves at constagd/ds=A(2c, —c_). Starting fromJ,., J decreases further

speed and, given by the equal area ru(8), [1].

After a certain time, the wave front, reaches 1, and we
have a new stage governed by E) with Y,=1 andY;
given by Eg. (9. The -equation for J becomes
dJ/ds=Ac, >0, and its solution increas¢somparel andu
at time(2) in Fig. 1] until it surpasses the valuk such that
Us(J)=pJd. (At J., [dul/dx]=o changes sign and the qua-
sistationary injecting layer becomes unstapl?]. Lets; be
the earliest time at whicl=J.. After s=s;, the profile of
u changes within the boundary layeryt0: this injecting

layer becomes unstable, and it sheds a new wave during@n the

fast stage described by the time scate(s—s;)/e. To find

to J' [the zero of (2,—c_)] if 2c,.(J)<c_(J) (the
stable case witd.>J" in Fig. 2). After the old wave reaches
y=1, we again obtain Eqg6)—(10) and recover the initial
situation. Thus a full period of the Gunn oscillation is de-
scribed; see Fig. 1. On the other hand, &,2J.)>c_(J.)
(J*<J.<JM, J increases after the formation of the new
pulse, and it is possible for the injecting layer to shed more
waves into the bulk, as shown by the numerical simulations
of Fig. 3. How many waves are shed depends both on the
value ofJ. (and therefore on the injecting resistivigy and
length L. A rough estimation would give
(n+21)c, (J.)=nc_(J.) ase—0 for the numben of shed

what happens next we need to perform a more complicateslaves. This shedding mechanism seems to have the effect of

analysis keepin@®(¢) terms in the outetbulk) expansion of

u andJ, and just the leading-order term in all inner expan-

sions(boundary layers and wave frointJ his calculation has
been performed in detail for a semiconductor mdde. It
can be shown that the shedding

breaking the spatial coherence of the sample, which may
lead to complex spatiotemporal phenoméimermittencies
with a varying number of pulses present in the sample at
different times. The unstable case will be further analyzed in
the near future.
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150 (10)]? (ii) How does the wave speed change when it arrives
" to the receiving contact@i) How are new waves created at
[~ 140 the injecting contact? In addition, we have described an in-

stability mechanism consisting of multiple pulse shedding
during each oscillation o8, which appears for appropriate
values of the boundary parameters at the injecting contact.
Similar work has been performed in diverse semiconductor
models: Gunn oscillations in ultrapure closely compensated
p-type Ge[18], Kroemer's model of Gunn oscillations in

— 130

— 120

— 110

10 | 00 bulk n-type GaAs[20], and slow oscillations in semi-
insulating GaAs[21]. A modification of the asymptotic
L o0 method presented here describes the charge monopole recy-
cling responsible for the self-oscillations mdoped weakly
T 0 o 8 s 7% coupled superlattice§22]. Irrespective of the physical
x 000 005 010 ot mechanism responsible for the existence of the wave front

and pulses, our asymptotic method describes the Gunn oscil-
FIG. 3. (a) Density plot for u(x,t) with p=4, ¢=0.3 and lations in these models. The model presented here perhaps
g(u) as in Fig. 1(lighter color means largeu). Here multiple illustrates in the simplest way what the method consists of:
shedding of pulses occurs at the injecting layer: two pulses aréi) find the equations and boundary conditions which charac-
formed during each period. The second shed reaches and overtakesize the shape of the wave fronts and their speed as func-
the first one(b) The corresponding profile af(t). tions of the current density. (i) Derive the equations which

) ) ) _determineJ as a function of the slow time scale depending
In conclusion, we have investigated what are the mainy, the number of wave fronts present in the sample. The

features that a given model should have in order to preseRjeiq profile follows adiabatically the evolution of. (iii)
the Gunn effect. These features are demonstrated by studyingyq the semiinfinite problems responsible for wave shedding

a simple model by means of a general asymptotic analysig; the contacts. The solution and matching of these problems
corroborated by direct numerical simulations. As a result thgie|ds an approximation of the Gunn effect in the given

Gunn effect is reduced to solving a sequence of very simplg,,qel. Of course, solving some of these steps may be in

problems(one equation fod each timg plus a canonical jself a rather complicated technical problem for particular
problem for shedding new pulses. Our asymptotic analysis,ggels requiring special asymptotid].

explains qualitatively and quantitatively the formation, mo-

tion and annihilation of pulses in the Gunn effect. This work  This work was supported by the DGICYT Grant No.
sheds light on several puzzling aspects of the Gunn oscilla®PB94-0375, and by the EC Human Capital and Mobility Pro-
tions (see the chapter on open problems in RéR)): (i) gram Contract No. ERBCHRXCT930413. We thank M. J.
Why do pulses move with the well-known equal-area-ruleBergmann, P. J. Hernando, M. A. Herrero, F. J. Higuera, M.
velocity at constant] when they are far from the contacts Kindelan, M. Moscoso, S. W. Teitsworth, J. J. L. Vajaez,
[the corresponding current is a stable equilibrium of Eqg.and S. Venakides for fruitful discussions.
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