Abstract

A standard drift-diffusion model of space charge wave propagation in semiconductors has been studied numerically and analytically under dc voltage bias. For sufficiently long samples, appropriate contact resistivity and applied voltage - such that the sample is biased in a regime of negative differential resistance - we find chaos in the propagation of nonlinear fronts (charge monopoles of alternating sign) of electric field. The chaos is always low-dimensional, but has a complex spatial structure; this behavior can be interpreted using a finite dimensional asymptotic model in which the front (charge monopole) positions and the electrical current are the only dynamical variables.Comment: 12 pages, 8 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020