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Abstract

Ensemble averages of a stochastic model show that, after a for-
mation stage, the tips of active blood vessels in an angiogenic network
form a moving two dimensional stable diffusive soliton, which advances
toward sources of growth factor. Here we use methods of multiple scales
to find the diffusive soliton as a solution of a deterministic equation for
the mean density of active endothelial cells tips. We characterize the
diffusive soliton shape in a general geometry, and find that its vector
velocity and the trajectory of its center of mass along curvilinear co-
ordinates solve appropriate collective coordinate equations. The vessel
tip density predicted by the soliton compares well with that obtained
by ensemble averages of simulations of the stochastic model.

Keywords: Two dimensional diffusive soliton, noise models, pattern for-
mation, nonlinear dynamics, systems biology, tumor induced angiogenesis,
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1 Introduction

Angiogenesis is the growth of blood vessels out of a primary vessel, a complex
multiscale process that determines organ growth and regeneration, tissue
repair, wound healing and many other natural operations [1, 2, 3, 4, 7, 5, 6].
Its imbalance contributes to numerous malignant, inflammatory, ischaemic,
infectious, and immune diseases [1], such as cancer [8, 9, 10, 11, 12, 13],
rheumatoid arthritis [14], neovascular age-related macular degeneration [15,
16], endometriosis [17], and diabetes [18].

Normal angiogenesis proceeds as follows. During inflammation or un-
der hypoxia, cells may activate signaling pathways that lead to secretion of
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pro-angiogenic proteins, such as Vessel Endothelial Growth Factor (VEGF).
VEGF diffuses in the tissue, binds to extracellular matrix (ECM) compo-
nents and forms a spatial concentration gradient in the direction of hypoxia.
When VEGF molecules reach an existing blood vessel, they promote dimin-
ishing adhesion of its cells and the growth of new vessel sprouts. VEGF
also activates the tip cell phenotype in endothelial cells (ECs) of the ves-
sel, which then grow filopodia with many VEGF receptors. The tip cells
pull the other ECs, open a pathway in the ECM, lead the new sprouts, and
migrate in the direction of increasing VEGF concentration [19]. Branching
of new sprouts occurs as a result of signaling and mechanical cues between
neighboring ECs [20, 21, 22]. ECs in growing sprouts alter their shape to
form a lumen connected to the initial vessel that is capable of carrying blood
[23]. Sprouts meet and merge in a process called anastomosis to improve
blood circulation inside the new vessels. Poorly perfused vessels may become
thinner and their ECs, in a process that inverts angiogenesis, may retract to
neighboring vessels leading to a more robust blood circulation [24]. Thus,
the vascular plexus remodels into a highly organized and hierarchical net-
work of larger vessels ramifying into smaller ones [25]. In normal processes
of wound healing or organ growth, the cells inhibit the production of growth
factors when the process is finished.

The previous picture changes in significant ways in pathological angio-
genesis. Hypoxic cells of an incipient tumor experience lack of oxygen and
nutrients. Then they produce VEGF that induces angiogenesis, and new
vessel sprouts exit from a nearby primary vessel and move in the tumor
direction [9, 1, 11]. Blood brings oxygen and nutrients that foster tumor
growth. Instead of inhibiting production of growth factors, tumor cells con-
tinue secreting growth factors that attract more vessel sprouts and facilitate
tumor expansion. Together with experiments, there are many models span-
ning from the cellular to macroscopic scales that try to understand angio-
genesis [10, 22, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55].

Early models consider reaction-diffusion equations for densities of cells
and chemicals (growth factors, fibronectin, etc.) [10, 28, 29]. They cannot
treat the growth and evolution of individual blood vessels. Tip cell stochastic
models of tumor induced angiogenesis are among the simplest ones for this
complex multiscale process. Their basic assumptions are that (i) the cells of
a blood sprout tip do not proliferate and move towards the tumor producing
growth factor, and (ii) proliferating stalk cells build the sprout along the
trajectory of the sprout tip. Thus tip cell models are based on the motion of
single particles representing the tip cells and their trajectories constitute the
advancing blood vessels network [26, 27, 31, 34, 35, 41, 51, 52, 55, 56]. Tip
cell models describe angiogenesis over distances that are large compared with
a cell size, thereby renouncing to detailed descriptions of cellular processes.
More complex models include tip and stalk cell dynamics, the motion of tip
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and stalk cells on the extracellular matrix outside blood vessels, signaling
pathways and EC phenotype selection, blood circulation in newly formed
vessels, and so on [40, 43, 50, 52, 57, 22].
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Figure 1: Angiogenic network generated by the stochastic process at (a) 24
hr and (b) 36 hr after sprouts issue from the primary blood vessel at x = 0.
The level curves of the TAF density C(t,x) are also depicted, showing a
tumor located vertically at x = L above the x-axis.

Previously, we have derived a deterministic description from a simple
two dimensional (2D) tip cell model of tumor induced angiogenesis [51].
This model considers tip cells subject to chemotactic, friction and white
noise forces, and to random branching. When a moving sprout tip meets
an existing sprout or a blood vessel, it fuses with it and stops moving,
which is a simple model of anastomosis. A slightly more complicated earlier
model by Capasso and Morale also includes haptotaxis [41]. Fig. 1 shows
two snapshots of a realization of the stochastic process. Our deterministic
description [51] consists of an integropartial differential equation for the
density of active tip cells coupled to a reaction-diffusion equation for the
tumor angiogenic factor (TAF), which is representative of VEGF and other
relevant growth factors. Branching and anastomosis processes appear as
source and sink terms in the equation for the density of active tip cells.
The tip density and other mesoscopic quantities are ensemble averages over
replicas of the stochastic process [56]. A similar equation for the tip density
on RD (D = 2, 3) can be rigorously derived from the stochastic equations
in the limit as the initial number of tips goes to infinity [58]. However,
when we consider the more realistic situation of angiogenesis issuing from
a primary vessel and advancing in a bounded region, the number of tips
is finite and limited by anastomosis. In this situation, the derivation of
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the deterministic equation from ensemble averages of the stochastic process
makes more physical sense [56], although a rigorous proof of its validity
seems more difficult.

Analysis and numerical solutions of both deterministic and stochastic de-
scriptions of angiogenesis show that the tip density advances from primary
blood vessel to tumor as a moving lump, which is a two dimensional diffu-
sive soliton (2DDS). The 2DDS is a solution of a simplified version of the
integropartial equation for the density of active tips moving on R2 and with
constant TAF concentration. In simple one dimensional (1D) geometries,
the longitudinal profile of the moving lump is a one dimensional diffusive
soliton (1DDS) [59]. Diffusive solitons are stable solitary waves of dissi-
pative systems which, unlike true solitons, do not emerge unchanged from
collisions [60]. How does the soliton picture apply to angiogenesis starting
from a blood vessel and advancing toward a tumor? The distance between
the primary vessel and the tumor has to be sufficiently large, for otherwise
the 2DDS does not have space and time to form. Provided the distance is
large enough, there are three stages for the motion of active tips. First, the
active tips proliferate through branching until the 2DDS forms. Secondly,
the 2DDS advances far from primary vessel and tumor. This second stage
can be approximated by the 2DDS solution obtained for the case of infinite
space and constant TAF concentration if the latter changes slowly. The ve-
locity and shape of the soliton vary slowly to accommodate the changes in
TAF concentration and are determined by collective coordinate equations
(CCEs) [59, 61, 62]. The last stage describes how the angiogenic network
reaches the tumor.

The main result of this work is finding and validating an approximate
description and CCEs for the 2DDS in the general case. Note that angio-
genesis is a biological process very far from equilibrium. However, numerical
simulations show that when the density of active vessel tips is far from the
boundaries (primary vessel and tumor), it evolves rapidly to a particular
pattern, the 2DDS or angiton. The latter is a stable uniformly moving so-
lution for a Fokker-Planck equation with source terms and constant TAF
concentration in the spatially unbounded case. It plays the same role as
the thermal equilibrium solution for the Fokker-Planck equation describing
a system with detailed balance. The 2DDS is characterized by a few pa-
rameters (velocity, height). For a finite geometry and slowly-varying TAF
concentration, the 2DDS parameters change slowly to accommodate the an-
giton motion towards the boundaries and the varying TAF concentration.

The description of the second stage of angiogenesis is far from obvious.
The first step is to reduce the 2D equation for the marginal tip density to
a 1D equation. For equations deriving from a variational principle, such as
the Gross-Pitaevskii equation for a cigar shaped Bose condensate, an appro-
priate Ansatz is a Gaussian function of the transversal coordinate times a
function of the axial coordinate [63]. Inserting this Ansatz into the action of
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the variational principle produces an equation for the longitudinal function
and an equation for the width of the Gaussian. When the latter is solved
in terms of the longitudinal function, it yields an effective 1D nonlinear
equation for it [63].

The deterministic equation governing tumor induced angiogenesis does
not derive from a variational principle, and, therefore, we cannot use the
same ideas to reduce it to a 1D equation. For a general configuration, the
2DDS does not move on a straight line and, therefore, we have to use curvi-
linear coordinates to characterize both the 2DDS and the trajectory of its
center of mass. The longitudinal coordinate is directed along the instan-
taneous velocity of the 2DDS and the transversal coordinate is measured
perpendicularly to the velocity. By using the method of multiple scales with
a fast transversal length scale that characterizes the 2DDS width, (i) we show
that the marginal tip density has Gaussian shape (with a small variance),
and (ii) derive an averaged 1D equation for the 2DDS longitudinal profile.
The latter equation is the same as derived earlier for a simple 1D geome-
try [61] except for a renormalized anastomosis coefficient and motion over
the longitudinal curvilinear coordinate. The solution of the 1D is a 1DDS.
While the soliton is a stable traveling wave moving rigidly on the infinite
the real line, the slow evolution of the TAF concentration and the influence
of boundary conditions change the 2DDS shape and velocity. We derive
equations for collective coordinates of the 2DDS that include the magnitude
and orientation of the soliton velocity, its shape parameter, and the location
of its center of mass. The 2DDS rapidly adjusts its shape to the instanta-
neous values of the collective coordinates. From the numerical solutions of
the CCEs, we can reconstruct the 2DDS, which then yields the marginal
density of active tips. Comparison with the marginal density obtained from
ensemble averages shows that the 2DDS provides a good approximation for
the stochastic description of the tip cell model. Possible future applications
of the present work to biology include investigating control of the 2DDS
motion, e.g. by studying the effect of antiangiogenic drugs on its dynamics;
cf Ref. [33] for modifications of angiogenesis models due to angiostatin.

The rest of the paper is as follows. We recall the reduced integropar-
tial differential equation for the marginal density of active vessel tips [56]
in Section 2. To describe the lump of active tips moving toward the tumor,
we assume that it is initially a Gaussian function of the transversal coordi-
nate, check that it continues evolving as a Gaussian, derive an equation for
its longitudinal part and find a one dimensional soliton as an approximate
solution in Section 3. The analytical formula for the soliton is analogous
to that found in [59, 61]. Section 4 contains a derivation of the differen-
tial equations for the collective coordinates of the 2DDS. The coefficients of
the CCEs are spatial averages over the TAF density. The width of narrow
2DDSs is time independent and only three collective coordinates are needed
to describe them. In Section 5, we explain how to calculate the coefficients
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in the CCEs, solve them numerically, reconstruct the 2DDS and, through
it, the marginal vessel tip density. We compare it with ensemble averages
of the stochastic process. It turns out that the location of the 2DDS peak
approximately gives the location of the maximum of the marginal density for
any realization of the stochastic process. Thus, the 2DDS roughly describes
the advancing vessel network for each realization although different realiza-
tions provide different looking vessel networks. The conclusions of this work
appear in Section 6. The Appendices are devoted to technical matters.

2 Angiogenesis model

2.1 Stochastic model

Early stages of tumor induced angiogenesis are described by a simple stochas-
tic model of motion, creation and destruction of active tips [51, 56]. The
model comprises a system of Langevin-Ito equations for the extension of ves-
sel tips, branching of tips (a birth process) and anastomosis (an annihilation
process when the tips merge with existing vessels and cease to be active).
In the model, the growing vessels are the trajectories of active vessel tips,
whose motion obeys the following Langevin-Ito equations

dXi(t) = vi(t) dt,

dvi(t) =
[
−vi(t) + F

(
C(t,Xi(t))

)]
βdt+

√
β dWi(t), (1)

where the Xi(t) and vi(t) are the position and velocity of the ith tip at
time t, respectively, the Wi(t) are independent identically distributed (i.i.d.)
standard Brownian motions, and

F(C) =
δ

β

∇xC(t,x)

[1 + Γ1C(t,x)]q
=
δ∇x[1 + Γ1C(t,x)]1−q

(1− q)Γ1β
. (2)

The equation for the TAF density C(t,x) is

∂

∂t
C(t,x) = κ∆xC(t,x)− χC(t,x)

N(t)∑
i=1

|vi(t)| δσx(x−Xi(t)), (3)

where N(t) is the number of active tips at time t and δσx are regularized
delta functions:

δσx(x) =
e−x

2/σ2
x e−y

2/σ2
y

πσxσy
. (4)

The ith active tip branches and fuses (anastomoses) with another tip or
vessel at random times T i and Θi, respectively. At time T i a new active tip
is created, whereas at time Θi the ith tip merges with a vessel or reaches

6



the tumor, thereby ceasing to be active and counting as such. We ignore
branching from mature vessels or from existing vessel sprouts; see [58].

The probability that a tip branches from one of the existing ones during

an infinitesimal time interval (t, t+dt] is proportional to
∑N(t)

i=1 α(C(t,Xi(t)))dt,
where α(C) is given by

α(C) =
AC

1 + C
, A > 0. (5)

At time T i, the velocity of the new tip that branches from tip i is selected out
of a normal distribution, δσv(v−v0), with mean v0 and a narrow variance σ2

v .
The regularized delta function δσv(x) is given by Eq. (4) with σx = σy = σv.

The change per unit time of the number of tips in boxes dx and dv about
x and v is

N(t)∑
i=1

α(C(t,Xi(t))) δσv(v
i(t)− v0) =

∫
dx

∫
dv
α(C(t,x))

×δσv(v − v0)

N(t)∑
i=1

δ(x−Xi(t))δ(v − vi(t))dxdv. (6)

Representative values of all involved dimensionless parameters can be found
in Table 1 [51, 56].

δ β A Γ Γ1 κ χ σv σx σy
d1CR
ṽ20

kL
ṽ0

α1L
ṽ30

γ
ṽ20

γ1CR
d2
ṽ0L

η
L - - -

1.5 5.88 22.42 0.189 1 0.0045 0.002 0.08 0.15 0.05

Table 1: Dimensionless parameters and representative values.

2.2 Deterministic equations

It is possible to derive deterministic equations for the density of active vessel
tips and the vessel tip flux from the stochastic model. In all cases, the law
of large numbers [64] is involved. As the initial number of active tips N(0)
tends to infinity, the scaled tip density, defined as the number of active tips
per unit phase volume divided byN(0), is a self-averaging quantity obeying a
deterministic integrodifferential equation [58], similar to that derived earlier
in [51]. This can be proved rigorously as an initial value problem for tips
moving on the infinite space [58]. However, the situation is different for a
slab geometry in two space dimensions, where tips are born from a primary
vessel and advance toward a tumor placed at a finite distance. In this
case, proliferation of active vessels due to branching is balanced by their

7



inactivation due to anastomosis, which typically keeps the number of active
tips below one hundred [56]. Numerical simulations of the stochastic process
also indicate that there are substantial velocity and density fluctuations.
Thus, there is numerical evidence that the density of active tips is not self-
averaging for bounded geometries.

An average density satisfying a deterministic equation can be determined
by a different usage of the law of large numbers. We consider a large number
N of replicas (realizations) ω of the stochastic process and introduce the
following empirical averages [56]:

pN(t,x,v) =
1

N

N∑
ω=1

N(t,ω)∑
i=1

δσx(x−Xi(t, ω))δσv(v − vi(t, ω)), (7)

p̃N (t,x) =
1

N

N∑
ω=1

N(t,ω)∑
i=1

δσx(x−Xi(t, ω)), (8)

jN (t,x) =
1

N

N∑
ω=1

N(t,ω)∑
i=1

|vi(t, ω)|δσx(x−Xi(t, ω)). (9)

Replicas of the stochastic process are independent by definition. By the law
of large numbers as N → ∞, the limits of these empirical averages become
the expected values of the tip density, the marginal tip density and the
vessel tip flux according to the stochastic process [64]. The averages over
the set of replicas are the usual ensemble averages of statistical mechanics.
The densities in Eqs. (8) and (9) are not probability densities: note that the
integral of the marginal density p̃N (t,x) over space is not one. Instead, it is
the average number of active tips at time t, 〈〈N(t)〉〉 = N−1

∑N
ω=1N(t, ω),

which is finite in the limit of infinitely many replicas and changes with time
due to the branching and anastomosis processes.

In Ref. [56], we have shown that the ensemble averages, p(t,x,v), p̃(t,x),
and j(t,x), solve the following equations:

∂

∂t
p(t,x,v) = α(C(t,x)) p(t,x,v)δσv(v − v0)− Γ p(t,x,v)

∫ t

0
p̃(s,x) ds

−v·∇xp(t,x,v)− β∇v · [(F(C(t,x))− v)p(t,x,v)] +
β

2
∆vp(t,x,v),(10)

p̃(t,x) =

∫
p(t,x,v′) dv′. (11)

Here, the first two terms on the right-hand side of Eq. (10) describe branch-
ing and anastomosis, respectively. The other terms are the usual ones ap-
pearing in the Fokker-Planck equation corresponding to the Langevin equa-
tions (1). The TAF equation (3) becomes

∂

∂t
C(t,x) = κ∆xC(t,x)− χC(t,x) j(t,x), (12)
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where

j(t,x) =

∫
|v′| p(t,x,v′) dv′. (13)

Unlike the case of the mean field limit N(0)→∞ in Ref. [58], we lack a proof
that the considered ensemble averages obey the deterministic equations (10)-
(12). However, we can compare the solution of the deterministic equations
to the ensemble averages of the stochastic process and fit the anastomosis
coefficient Γ so that the average number of tips as a function of time is
as close as possible in both descriptions [56, 61]. The number of replicas
N in our numerical simulations is selected so that the ensemble averages,
pN (t,x,v), p̃N (t,x), and jN (t,x), do not change by adding any more replicas
to N . Appendix A contains appropriate initial and boundary conditions for
solving the deterministic equations (10) and (12).

In principle, the ensemble average view of angiogenesis could be used to
calculate higher moments, not only averaged quantities. This is largely un-
explored. In Ref. [56], we have used Ito’s formula with added branching and
anastomosis to obtain an equation for the tip density. To this end, we need
some closure assumptions of the type 〈〈f(x)〉〉 = f(〈〈x〉〉). Justifying these
assumptions would require taking into account and analyzing density fluctu-
ations. This could be done by deriving a hierarchy of equations for n-particle
densities and using closure assumptions as in kinetic theory [65, 66, 67]. We
could also include density fluctuations by keeping a Poisson noise (repre-
senting random branching) in Eq. (10) for the active tip density [56]. This
would give a formulation akin to the fluctuating lattice Boltzmann equation
[68]. In other cases, such as in the classical statistical mechanics of a crystal
[69] or in fluid turbulence [70], it has been possible to derive and analyze
functional equations. In recent years, there has been much progress in un-
derstanding rigorously the Kolmogorov-Hopf functional differential equation
for fluid turbulence and the underlying invariant measure, [71].

2.3 Marginal tip density

Assuming that the extension of the moving angiogenic sprouts is over-
damped, Eqs. (10) and (12) yield the following system of nondimensional
equations for the marginal density of active vessel tips, p̃(t,x), and the TAF
density, C(t,x), [61]

∂p̃

∂t
+∇x ·(Fp̃)−

1

2β
∆xp̃ = µ p̃− Γp̃

∫ t

0
p̃(s,x)ds, (14)

∂

∂t
C(t,x) = κ∆xC(t,x)− χ̃ C(t,x) p̃(t,x). (15)
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Here

µ =
α

π

[
1 +

α

2πβ(1 + σ2
v)

ln

(
1 +

1

σ2
v

)]
, χ̃ = Jχ,

J =

∫ ∞
0
dV

V e−V
2

π

∫ π

−π
dφ
√

1 + V 2 + 2V cosφ. (16)

Note that the details of velocity selection during branching are lumped in
the function µ(C) given by Eq. (16). In Ref. [61], Eqs. (14) and (15) are
derived from Eqs. (10) and (12) by a Chapman-Enskog perturbation method
that shows the tip density to be p ∼ e−|V|2 p̃(t,x)/π. Inserting this density in
Eq. (13) and replacing v′ = v0 +V, we find j(t,x) = Jp̃(t,x) (J ≈ 1.28192).

x v t C p p̃

L ṽ0
L
ṽ0

CR
1

ṽ20L
2

1
L2

mm µm/hr hr mol/m2 1021s2/m4 105m−2

2 40 50 10−16 2.025 2.5

Table 2: Dimensional units with representative values.

Typical values of the positive dimensionless parameters appearing in
Eqs. (14)-(15) are given in Table 1 whereas Table 2 gives the units used to
nondimensionalize them [51]. Table 1 shows that 1/β, κ and χ are small.
This means that the evolution of the TAF density is slow compared to that
of p̃ and that the diffusion in Eq. (14) is small.

3 Two dimensional diffusive soliton

In this section, we derive the approximate 2DDS by using a method of
multiple scales.

3.1 Marginal tip density in curvilinear coordinates

We now find an approximate lump-shaped solution of Eq. (14). Let X(t)
be the center of mass of the lump at time t. Longitudinal and transverse
coordinates based on the trajectory X(t) are

ξ = (x−X)·V̂, η = (x−X)·V̂⊥, (17)

V = Ẋ = cV̂ = c(cosφ, sinφ), V̂⊥ = (− sinφ, cosφ). (18)

See Fig. 2. Here and henceforth, ḟ(t) = df/dt for any function of time,
c = |V|. Thus, x = (x, y) = (X,Y ) + (Ẋ, Ẏ ) ξ/c + (−Ẏ , Ẋ) η/c. Eq. (14)
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primary vessel

tumor

Figure 2: Sketch of the unit vectors V̂ = (cosφ, sinφ) and V̂⊥ =
(− sinφ, cosφ).

can be written as

∂p̃

∂t
+

∂

∂ξ

(
(Fξ − c+ ηφ̇)p̃− 1

2β

∂p̃

∂ξ

)
+

∂

∂η

(
(Fη − ξφ̇)p̃− 1

2β

∂p̃

∂η

)
− µ p̃

= −Γp̃

∫ t

0
p̃(s, ξ(s), η(s)) ds, (19)

Fξ = V̂ · F, Fη = V̂⊥ · F, (20)

because ξ̇ = −c+ ηφ̇ and η̇ = −ξφ̇.

3.2 Method of multiple scales

We shall now assume that the initial TAF concentration is a Gaussian with a
small variance across the transversal direction η. We assume that p̃ depends
on a fast variable η/σ and a slowly varying η. We will use a method of
multiple scales to find the slowly varying part of the marginal tip density
[72, 73]. The dominant terms in Eq. (19) are

∂

∂η
(Fηp̃) ∼

1

2β

∂2p̃

∂η2
=⇒ p̃ ∼ e2βΩ[C]Ψ(t, ξ), (21a)

Ω[C] =
δ

β

(1 + Γ1C)1−q

Γ1(1− q)
∼ Ω0(η)− η2

2

∣∣∣∣(∂2Ω

∂η2

)∣∣∣∣
η=0

∣∣∣∣∣, (21b)
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in which ∂Ω/∂η = Fη = 0 at η = 0, where C reaches its local maximum.
Then the approximate density is a narrow Gaussian in η that satisfies

p̃(t,x) ∼ e−η
2/σ2

√
π σ

P (t, ξ, η) ∼ δ(η)P (t, ξ, 0), (22a)

σ2 =
1

β|∂2Ω
∂η2
|

∣∣∣∣∣
η=0

=
[1 + Γ1C]q∣∣∣∂2C∂η2 ∣∣∣ δ

∣∣∣∣∣∣
η=0

, (22b)

as σ → 0. We have identified σ and, for the numerical values in Table 1, σ
is indeed small; see Section 5. Then P (t, ξ, η) varies slowly in η compared
to the Gaussian prefactor in Eq. (22). To obtain a reduced equation for P ,
we multiply Eq. (19) by σ and integrate it with respect to the fast variable
η̃ = η/σ. After this, we use the second approximation in Eq. (22a) and set
the slow variable η = 0. The resulting equation for P (t, ξ, 0) is

∂P

∂t
+

∂

∂ξ

(
(Fξ − c)P −

1

2β

∂P

∂ξ

)∣∣∣∣
η=0

+
∂

∂η

(
(Fη − ξφ̇)P − 1

2β

∂P

∂η

)∣∣∣∣
η=0

= µP − Γ

σ
√

2π
P

∫ t

0
P (s, ξ, 0) ds, (23)

f(η̃, η) =
1√
π

∫ ∞
−∞

f(η̃, 0) e−η̃
2
dη̃, (24a)

σ

∫ ∞
−∞

∂

∂η
[f(η̃, η)p̃] dη̃ =

∂

∂η
[P f(η̃, η)]

∣∣∣∣
η=0

, (24b)

σ

∫ ∞
−∞

p̃ dη̃ = P (t, ξ, 0). (24c)

3.3 One dimensional soliton

Keeping Eq. (22a) in mind, we will now look for a solitary wave profile
of P (t, ξ, 0) as in Refs. [59, 61], which, by abuse of language, we shall call
soliton. The coefficients κ and χ in Eq. (15) are very small [51] and therefore
the TAF concentration varies very slowly compared with the marginal tip
density. When writing Eq. (23), we have used that Fξ and Fη depend on C
and, therefore, vary slowly in time and space. Note that the slow variation
of C implies that an initial Gaussian TAF concentration with small variance
produces an initial σ � 1, which does not change in time. Thus, Eq. (22)
may hold initially due to a peaked initial C and persist in time even if the
coefficients in Eq. (19) are of order 1.

For time and η independent P = P (ξ), with dt = −dξ/c, we now define

ρ(ξ) = −1

c

∫ ξ

ξ(0)
P (ξ′) dξ′, (25)
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insert it in Eq. (23) and integrate with respect to ξ. The result is

∂

∂ξ

(
(Fξ − c)ρ−

1

2β

∂ρ

∂ξ

)
=µρ− gρ2

2
+K, g=

Γ

σ
√

2π
, (26)

in which K is independent of ξ and g is a renormalized anastomosis coeffi-
cient. We will also assume that the initial TAF concentration varies on a
larger spatial scale than the soliton size, which constitutes a good approx-
imation [51]. Then Fξ and µ are almost constant. Ignoring diffusion, we
obtain (

c− Fξ
)2

g

∂ρ

∂ξ
= ρ2 − 2

µ

g
ρ− 2K

g
. (27)

Setting ρ = µ
g + ν tanh(λξ), we find ν2 = µ2+2Kg

g2
and 2νλ(c−Fξ)/g = −ν2,

thereby obtaining

ρ =
µ

g
−
√

2Kg + µ2

g
tanh

[√
2Kg + µ2

2(c− Fξ)
ξ

]
. (28)

Here a constant of integration has been absorbed in the definition of ξ. Thus
P = −c∂ρ/∂ξ yields [59, 61]

Ps(ξ) =
(2Kg + µ2)c

2g(c− Fξ)
sech2

[√
2Kg + µ2

2(c− Fξ)
ξ

]
. (29)

As indicated in Refs. [59, 61], Eq. (29) is similar to the usual soliton solution
of the Korteweg-de Vries equation, except that the soliton velocity and shape
now depend on three parameters, c, K, and (implicitly through ξ) φ. Note
that the existence of the 2DDS solution of Eqs. (22) and (29) is a consequence
of the quadratic anastomosis term in Eq. (14) first derived in Ref. [51]. The
function ρ in Eq. (25) is the integral of the square hyperbolic secant given
by Eq. (29), which has the same shape as the Korteweg-de Vries soliton
[74]. While the latter results from a balance of time derivative, nonlinear
convection and dispersion [74], the 1DDS soliton of Eq. (29) comes from
a balance of time derivative, linear convection, branching and anastomosis
(which contains a memory term).

3.4 Center of mass

Using Eqs. (22a) and (29), we can calculate the center of mass of the 2DDS
in curvilinear coordinates. As p̃(t,x) = e−η

2/σ2
Ps(ξ)/(

√
πσ) is even in both

η and ξ, the center of mass is the origin:
∫

(ξ, η) p̃(t,x)dξ dη/
∫
p̃(t,x)dξ dη =

(0, 0). Thus, the center of mass of the 2DDS coincides with the peak of the
marginal tip density when the soliton is a good approximation for the latter.
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4 Collective coordinates

Numerical simulations suggest that the 2DDS solution moving on unbounded
space is stable. To obtain the soliton formula (29), we ignored the effects
of small diffusion and a slowly varying TAF concentration. Without these
terms, a proof that the traveling wavefront solution Eq. (28) is linearly stable
(up to uniform spatial translations) follows along the same lines of Ref. [75].
We expect the effects of diffusion and the slow TAF evolution to make the
collective coordinates c, K and φ slowly varying functions of time: due to
its stability, the 2DDS adjusts its shape and velocity to the instantaneous
values of the collective coordinates.

For equations deriving from a variational principle, such as the Gross-
Pitaevskii equation for a cigar shaped Bose condensate, a derivation of the
CCEs first assumes that the soliton is a Gaussian function of the transversal
coordinate times a function of the axial coordinate [63]. Then this Ansatz is
inserted into the variational principle and the corresponding Euler-Lagrange
equations are the CCEs. In our case, we do not have a variational principle.
Instead, the method of multiple scales has provided us with the splitting of
the 2DDS in a Gaussian of the transversal coordinate times the longitudinal
1D diffusive soliton, cf Eq. (22a). What is an Ansatz in Ref. [63] is provided
by our theory of the 2DDS.

4.1 Slow variations of the collective coordinates

To obtain the 2DDS evolution without recourse to a variational principle
(which does not exist for the present problem), we observe the following. As
Fξ and µ are functions of C(t,x), Ps is primarily a function of ξ, but it is
also a slowly varying function of ξ, η and t through the η̃-averages of the
coefficients µ and Fξ. Then

Ps = Ps

(
ξ;K, c, µ(C), Fξ

(
C,
∂C

∂ξ

))
. (30)

The averages over the fast transversal coordinate η̃ still vary rapidly with the
longitudinal coordinate ξ of Eq. (29) and vary slowly on ξ and η through the
the TAF concentration, which varies smoothly with distance. As indicated
in Appendix B, we shall consider that µ(C) is approximately constant and
set ∂C/∂t = 0 because the TAF concentration is varying slowly with time.
Then we have

Ps

(
ξ;K, c, µ(C), Fξ

(
C,
∂C

∂ξ

))
= Ps(ξ;K, c, 〈Fξ〉)

+
∂Ps

∂Fξ
(ξ;K, c, 〈Fξ〉) (Fξ − 〈Fξ〉)+. . . , (31)
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in which we have dropped the dependence of Ps on µ(C) and expanded the
averages over the fast transversal coordinate, f(C(t, ξ, η)), to first order in
their differences with spatial averages

〈f(C(t, ψ, η))〉 =
1

b− a

∫ b

a
f(ψ) dψ. (32)

Here f(ψ) ≡ f(C(t0, ψ, 0)). Eq. (23) is an average over the longitudinal co-
ordinate, in which we have ignored time variation of the TAF concentration
after some time t = t0 and set η = 0, cf Eq. (22a). The time t0 is selected
after the formation stage of the 2DDS, and the interval I = (a, b) has to be
appropriately chosen, as discussed in the next section. Using Eq. (31), we
find

∇ξPs = (1, 0)
∂Ps
∂ξ

(ξ;K, c, 〈Fξ〉) +
∂Ps

∂Fξ
(ξ;K, c, 〈Fξ〉)∇ξFξ + . . . , (33)

∆ξPs =
∂2Ps
∂ξ2

(ξ;K, c, 〈Fξ〉) +
∂Ps

∂Fξ
(ξ;K, c, 〈Fξ〉)∆ξFξ +

+ 2
∂2Ps

∂ξ∂Fξ
(ξ;K, c, 〈Fξ〉)

∂Fξ
∂ξ

+ . . . , (34)

where ∇ξ = (∂/∂ξ, ∂/∂η) and ∆ξ = ∇2
ξ . We now insert Eq. (30) into

Eq. (23) and use Eqs. (31), (33) and (34) to simplify the result, thereby
obtaining (see Appendix B)

∂Ps
∂K

K̇+
∂Ps
∂c

ċ+

(
∂Ps

∂〈Fξ〉
Fη − ξ

∂Fξ
∂η

∂Ps

∂〈Fξ〉

)
φ̇ = A, (35)

A =
1

2β

∂2Ps
∂ξ2

− ∂Ps

∂〈Fξ〉

[(
(Fξ − c)

∂

∂ξ
+ Fη

∂

∂η

)
Fξ −

∆ξFξ
2β

]
−Ps

(
∂Fξ
∂ξ

+
∂Fη
∂η

)
+

1

β

∂Fξ
∂ξ

∂2Ps

∂ξ∂〈Fξ〉
+

1

2β

∂2Ps

∂〈Fξ〉2
|∇ξFξ|2. (36)

In these equations, Ps = Ps(ξ;K, c, 〈Fξ〉). We now find collective coordinate
equations (CCEs) for K, c and φ. Of course, these equations hold only when
the 2DDS is formed (far from primary vessel and tumor) after an initial stage
that lasts a time t0 > 0.

4.2 Finding CCEs by using an approximate integral formula

We first multiply Eq. (35) by ∂2Ps/∂ξ∂〈Fξ〉 (which is odd in ξ) and integrate
over ξ. As the soliton decays exponentially for |ξ| � 1, it is considered to be
localized on some finite interval (−L/2,L/2). The coefficients in the soliton
formula (29) and the coefficients in Eq. (35) depend on the slowly varying
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TAF concentration, therefore they are functions of ξ and time and get inte-
grated over ξ. The TAF varies slowly on the support of the soliton, hence
we can approximate the integrals of functions F (ξ;ψ, t) (varying rapidly on
their first argument and slowly on their second argument) over ξ by∫ b

a
F (ξ;ψ, t) dξ ≈ 1

L

∫ b

a

(∫ L/2
−L/2

F (ξ;ψ, t) dξ

)
dψ. (37)

As in Eq. (32), the interval I = (a, b) over which we integrate should be
large enough to contain most of the fully formed soliton of width L. We
have b < L because the region near the tumor affects the soliton and should
be excluded from the interval I, to be specified in the next section. Similarly,
a > 0. The only odd terms in ξ are the last term in the left-hand side of
Eq. (35) and the second to last term in Eq. (36); all other terms are even
in ξ and cancel out when multiplied by an odd function of ξ and integrated
over the interval (−L/2,L/2). Then after integrating by parts the term
proportional to −ξφ̇ in Eq. (35), we obtain

φ̇ =
2

β

∫∞
−∞

〈
∂Fξ
∂ξ

(
∂2Ps

∂ξ∂〈Fξ〉

)2
〉
dξ

∫∞
−∞

〈
∂Fξ
∂η

(
∂Ps
∂〈Fξ〉

)2
〉
dξ

. (38)

Here, factors 1/L in numerator and denominator cancel out and we have
taken the limit as L → ∞ in the ξ-integrals with negligible error because
the 2DDS decays exponentially to zero as |ψ| → ∞. The brackets 〈f(ψ)〉
have been defined in Eq. (32).

We now multiply Eq. (35) by ∂Ps/∂K (which is even in ξ) and integrate
over ξ. Now all terms on the right hand side of Eq. (36) produce a nonzero
contribution to the integral except for the second to last one. Acting simi-
larly, we multiply Eq. (35) by ∂Ps/∂c (which is even in ξ) and integrate over
ξ. From the two resulting formulas, we then find K̇ and ċ as

K̇ =
ÃKIcc − ÃcIKc
IKKIcc − I2

Kc

, (39)

ċ =
ÃcIKK − ÃKIKc
IKKIcc − I2

Kc

, (40)

in which we have used the following definitions:

Iij =

∫ ∞
−∞

〈
∂Ps
∂i

∂Ps
∂j

〉
dξ, i, j = K, c, (41)

Aj =

∫ ∞
−∞

〈
∂Ps
∂j
A
〉
dξ, j = K, c, (42)

Ãj =Aj−φ̇
∫ ∞
−∞

〈
∂Ps
∂j

∂Ps

∂〈Fξ〉
Fη

〉
dξ, j = K, c. (43)
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4.3 Equations for collective coordinates

The integrals of Eqs. (41)-(43) are calculated using Mathematica. As the
coefficients χ and κ are very small, the TAF concentration varies slowly, and
terms containing them are ignored. We have also set µ to be a constant.
Then Eqs. (36), (39)-(40) become

K̇ =
(2Kg+〈µ〉2)2

4gβ(c−〈Fξ〉)2

4π2

75 + 1
5 +
(

2〈Fξ〉
5c −

2π2

75 −
9
10

)
〈Fξ〉
c(

1− 4π2

15

)(
1− 〈Fξ〉2c

)2

− 2Kg + 〈µ〉2

g
(
2c− 〈Fξ〉

)(φ̇〈Fη〉+c〈∂Fη
∂η

〉
+
〈
F · ∇ξFξ

〉
−
〈∆ξFξ〉

2β

)

+
2Kg + 〈µ〉2

2gβ(c− 〈Fξ〉)2
〈|∇ξFξ|〉2

1− π2

30−
3〈Fξ〉

2c

(
1− π2

90

)
+
〈Fξ〉2
2c2(

1− 〈Fξ〉2c

)2 , (44)

ċ = −7(2Kg + 〈µ〉2)

20β(c− 〈Fξ〉)
1− 4π2

105(
1− 4π2

15

)(
1− 〈Fξ〉2c

) − c

2c− 〈Fξ〉

[
c

〈
∂Fξ
∂ξ

〉

+ (c−〈Fξ〉)〈∇ξ ·F〉+
〈∆ξFξ〉

2β
−
〈
F·∇ξFξ

〉
− φ̇〈Fη〉

]

−
〈|∇ξFξ|〉2

(
1 + π2

30

)
β
(
c−〈Fξ〉

)(
2− 〈Fξ〉c

) . (45)

If we set φ̇ = 0, these equations become Eqs. (C12)-(C13) of Ref. [61] with
µC = 0 and ξ = x. The coefficients entering Eqs. (44) and (45) are spatial
averages over ψ (which is the slow variable ξ that appears in the formulas
through the TAF concentration) and have η = 0 due to Eq. (22a). The
CCEs (38), (44) and (45), describe the mean behavior of the 2DDS after its
formation time, whenever it is far from primary vessel and tumor, as we will
show in the next section.

5 Numerical results

In this paper, we obtain the vessel tip density by ensemble averages of
stochastic simulations, as explained in Ref. [56]. If we set up symmetric
initial and boundary conditions so that the 2DDS moves on the x-axis,
X = (X, 0), V̂ = (1, 0), V̂⊥ = (0, 1), ξ = x −X, c = Ẋ, and η = y. Then
the integrals in Eq. (23) are integrals over y and the integrals in Eq. (32)
are simply integrals over x with y = 0. From our simulations, we can obtain
the evolution of the 2DDS collective coordinates thereby reconstructing the
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marginal tip density from Eqs. (22), (29), and (44)-(45) with φ̇ = 0. The
2DDS profile at y = 0 is the 1D soliton studied in Refs. [59, 61], which
agrees with numerical simulations of the stochastic process and also with
simulations of the corresponding deterministic equations.

5.1 Initial and boundary conditions

The simplest asymmetric configuration consists of one initial tip moving
toward a TAF source at x = 1, above the x-axis. To the values of the di-
mensionless parameters in Table 1, we have added the initial nondimensional
TAF concentration

C(0, x, y) = 1.1 e−(x−1)2/1.52−(y−0.4)2/0.62 , (46)

and the nondimensional TAF flux boundary condition at x = 1

∂C

∂x
(t, 1, y) = 1.1e−(y−0.4)2/0.62 . (47)

At x = 0, the TAF flux is zero. These conditions correspond to having a
TAF source at the border x = 1, above the x-axis at y = 0.4.

Figure 3: Density plots of the marginal tip density p̃(t, x, y) calculated from
Eq. (8) with N(0) = 1 and N = 400 replicas, showing how tips are created
at x = 0 and march toward the tumor at x = L. Snapshots at (a) 16 hr, (b)
24 hr, (c) 28 hr, (d) 32 hr.

5.2 A single initial tip

Suppose that initially there is only one tip, N(0) = 1, placed below the
x-axis, say at (0,−0.2). In a typical realization of the stochastic process,
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Figure 4: Profiles of the marginal tip density p̃(t,x) for η = 0 calculated as
in Fig. 3, and for the same times. We have fit the 2DDS (the angiton) given
by Eqs. (22a) and (29) with F ξ calculated at t = 16 hr and fixed for later
times. For each time, c and K are calculated from the maximum of p̃(t,x)
and the trajectory of its center of mass.

the initial active tip advances and undergoes repeated branching until the
density of active tips approaches the 2DDS. For sufficiently large distance
between the primary blood vessel and the tumor, the evolution of the active
tip density comprises three stages: a soliton formation stage, evolution of
the 2DDS far from the boundaries, and arrival at the TAF source. Here,
we only describe the second stage of a 2DDS detached from the boundaries.
A complete theory would require matching the detached soliton stage to
reduced descriptions of the other stages, which we do not attempt in this
paper. For shorter distances between primary blood vessel and TAF source,
a 2DDS may not even form and our theory is then inapplicable.

The evolution of the angiogenic network and the duration of the 2DDS
formation period depend on the specific selection of the velocity in Eq. (6).
For example, if v0 is parallel to the x axis, it takes 18 hr to form the 2DDS,
which finds it difficult to move upward to where the TAF source of Eq. (47)
is. Furthermore, there are more than 30 realizations of the stochastic process
for which anastomosis eliminates all active tips before they reach x = 1. We
need to discard these replicas when calculating the density of active tips by
an ensemble average. A better choice of v0 decreases the number of replicas
to be discarded and lifts the center of mass for the angiogenic network of
active tips. Fig. 3 shows four snapshots of p̃(t,x) after the 2DDS formation
time for v0 = (1, 0.4) and a 400-replica ensemble average. For this modified
v0, only two replicas need to be discarded. From the trajectory of the
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maximum of p̃, which coincides with the 2DDS center of mass, we calculate
K, c and φ. Fig. 4 displays a comparison of the snapshots of Fig. 3 for η = 0
with the 2DDS obtained from Eqs. (22a) and (29). The reasonably accurate
fit shown in Fig. 4 confirms the validity of the 2DDS description after the
formation stage and before the arrival at the tumor.

5.3 Coefficients in the CCEs and initial conditions after the
2DDS formation stage

As explained before, when there is a single tip at t = 0, the 2DDS forma-
tion stage takes longer, certain realizations of the stochastic process end up
prematurely by anastomosis before the tips can reach x = 1 and have to
be discarded. In addition, the influence of the details of tip velocity se-
lection at branching disappears in the overdamped limit. However, these
different details still affect the 2DDS motion. Thus, we shall compare its
motion to an initial configuration that has a faster formation stage and does
not require discarding failed replicas of the stochastic process. Let us now
consider an asymmetric configuration as in Fig. 1. In each stochastic sim-
ulation (replica), N(0) = 20 initial tips are placed at x = 0 and uniformly
distributed in the y-direction between -0.5 and 0.1 with v0 = (1, 0).

Stochastic simulations indicate that it takes a time t0 = 0.318 (16 hours)
after angiogenesis initiation to form the 2DDS. For t > t0, the evolution of
the soliton is given by Eqs. (44)-(45). The variance in Eq. (22) is fixed as
σ = 0.235. As indicated before, we consider that the collective coordinates
represent spatial averages over the spatial coordinate x excluding regions af-
fected by boundaries. The coefficients in Eqs. (44)-(45) are spatial averages
involving C(t0, x, y). We calculate them by: (i) approximating all differen-
tials by second order finite differences, (ii) approximating the integrals in
Eq. (23) by Gaussian quadrature, and (iii) using Eq. (32) to average the
coefficients by taking the arithmetic mean of their values at all grid points
in the interval x ∈ I = (0.54, 0.95] (0.21 < ξ ≤ 0.63). For 0 < x ≤ 0.54
and for 0.95 < x ≤ 1, the boundary conditions at x = 0 and at x = 1,
respectively, influence the outcome and therefore we leave these values out
of the averaging.

The initial conditions for the CCEs (44)-(45) are set as follows. We
find the coordinates of the maximum of the marginal tip density p̃(t0, x, y)
(calculated from ensemble average by Eq. (8) with N = 400) as X(t0) =
X0 = (0.34, 0.08). Similarly, we set K(t0) = 5.9, c(t0) = 1.15, φ(t0) =
0.245, determined so that the maximum marginal tip density at t = t0
coincides with the soliton peak. Solving the CCEs (44)-(45) with these
initial conditions, we obtain the curves depicted in Fig. 5.
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Figure 5: Evolution of the collective coordinates (a) K(t), (b) c(t), (c) φ(t),
(d) X(t), (e) Y (t).

5.4 Comparison of CCE predictions with stochastic simula-
tions

Using the 2DDS collective coordinates depicted in Fig. 5 and Eqs. (22) and
(29), we reconstruct the marginal vessel tip density and find its maximum
value and the location thereof for all times t > t0. Fig. 6 shows that the
position of the 2DDS as predicted from the CCEs (38) and (44)-(45) com-
pares very well with the location of the tip density maximum obtained by
ensemble average of stochastic simulations (over N = 400 replicas). Fig. 7
shows that the overall trajectory of the 2DDS agrees well with the location
of the tip density maximum, which coincides with the 2DDS center of mass.

Fig. 8 is the density plot of the ensemble-averaged marginal tip density
in four snapshots taken at 16, 20, 24 and 28 hours after the initial time.
Fig. 9 shows the density plot of the marginal tip density reconstructed from
the 2DDS CCEs. The shape of the respective density plots is different but
the sizes of their peaks are similar, which suggests correcting the leading
order of the multiple scales theory, Eq. (22). However, Figs. 6 and 7 show
that the 2DDS center of mass gives a good approximation for the motion
of the marginal density peak. Thus, the 2DDS gives a good approximation
of the advance of the marginal density and its order of magnitude. This
agreement is all the more remarkable, as the parameters in Table 1 used in
our simulations are not particularly small.
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Figure 6: Evolution of (a) x-coordinate, (b) y-coordinate, and (c) value of
the ensemble-averaged maximum marginal tip density (by N = 400 replicas)
as compared to the prediction by the collective coordinates of the 2DDS (the
angiton). The maximum absolute error is reached at t = 27 hr, 28 hr. It
approximately equals (a) ∆x = 0.02 and (b) 2∆x = 0.04, where ∆x is the
discretization space step. In (c) the relative error is around 4% at t = 27
hr, 28 hr, while it is smaller than 2.5% for all other times.

5.5 2DDS center of mass and replicas of the stochastic pro-
cess

So far, our reconstructions have been based on ensemble averages, which
produce mean values of the density of active tips and related functions.
In past work, we have shown that fluctuations about the mean are large
and, therefore, the stochastic process is not self-averaging [56]. However,
Fig. 10 indicates that the 2DDS center of mass is a good approximation to
the location of the maximum marginal tip density for different replicas of
the stochastic process. The x-coordinate of the maximum density location
is approximated better than its y-coordinate. While vessel networks may
widely differ from replica to replica, the position of the maximum marginal
tip density is about the same for different replicas. As the maximum of the
marginal tip density is a good measure of the advancing vessel network, the
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Figure 7: Evolution of the position (x, y) of the ensemble-averaged maximum
marginal tip density (over N = 400 replicas) as compared to that of the
2DDS (angiton) predicted by collective coordinates. The absolute error is
approximately equal to 2∆x = 0.04 at t = 27 hr, 28 hr, while it is ∆x = 0.02
at most for all other times. Here ∆x is the space step in the discretization.

location of the 2DDS peak also characterizes it.

6 Conclusions

On mesoscopic distances that are large compared to the size of one cell but
small compared to the size of an organ, the early stage of tumor induced an-
giogenesis can be described by stochastic models that track the trajectories
of active vessel tips. These models consider branching of blood capillaries as
a stochastic process and renounce to describe cellular processes and scales.
However, active tip models pose novel and interesting problems in nonequi-
librium statistical mechanics. In previous works, we have shown that the
ensemble-averaged density of active tips is described by an integrodifferen-
tial Fokker-Planck equation with source and sink terms [51, 56]. Together
with time derivative and linear convection, these terms make it possible for
this equation to have an approximate soliton solution for simple one dimen-
sional geometries [59, 61, 62]. The soliton solution has the same shape as the
well-known Korteweg-de Vries soliton, which results from a balance between
time derivative, nonlinear convection and dispersion [74].

In two dimensions, the marginal density of active tips acquires the form
of a moving lump or 2DDS that advances towards the tumor in a curvi-
linear trajectory. Here we have used a method of multiple scales to show
that the transversal section of the 2DDS is a narrow Gaussian and that its
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Figure 8: Density plots of the marginal tip density p̃(t, x, y) calculated from
Eq. (8) with N = 400 replicas, showing how tips are created at x = 0 and
march toward the tumor at x = L. Snapshots at (a) 16 hr, (b) 20 hr, (c) 24
hr, and (d) 28 hr.
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Figure 9: Same as in Fig. 8 but now the density plots of p̃(t, x, y) are calcu-
lated from Eq. (22) and the CCEs (38), (44), (45) for the 2DDS. Snapshots
at (a) 16 hr, (b) 20 hr, (c) 24 hr, and (d) 28 hr.

longitudinal section is a diffusive soliton. The slow variation of the tumor
angiogenic factor changes slowly the shape and trajectory of the 2DDS. The
latter can be reconstructed by solving collective coordinate equations for its
speed, direction of velocity, shape parameter and coordinates of the center of
mass. As the parameters used in numerical simulations are not particularly
small, it is remarkable that the predictions from the 2DDS and its collective
coordinates (based on the method of multiple scales and singular perturba-
tion ideas) compare well with the predictions from numerical simulations of
the stochastic model. The shape of the marginal density of active tips as
obtained from ensemble averages of stochastic simulations is less symmetric
than that reconstructed from the 2DDS. However, the size and position of
its peak follow those given by Eqs. (22a) and (29) (the 2DDS) and the CCEs
(38), (44) and (45).

In principle, the present model and the 2DDS construction can be ex-
tended to three spatial dimensions. We need to consider the angiogenic
vessels as the tip trajectories plus a narrow region or tube around them
and a criterion for anastomosis; cf Ref. [58] for a possible way to do this.
The derivation of CCEs could proceed along the lines explained in the
present work. We would need to consider an additional curvilinear coor-
dinate along the binormal and modify accordingly the CCEs. Extensions
of the present work to more complete models based on tip cell motion are
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Figure 10: (a) x-coordinate and (b) y-coordinate of the 2DDS (angiton)
peak compared to those of the maximum marginal tip density for different
replicas of the stochastic process.

possible [41, 52, 62], but we feel it is better to present these ideas in the sim-
plest possible context. Future applications of the present work to biology
include investigating possible control of the 2DDS motion, e.g. by studying
the effect of antiangiogenic drugs; cf Ref. [33]. In physics, our work could
be useful to study dynamic phenomena that include stochastic branching
and merging of advancing point defects. For example, propagation of cracks
in brittle materials [76] or dielectric breakdown [77]. From the point of
view of nonequilibrium statistical mechanics, at the present time there is
no theory of the large fluctuations about the averaged tip density. Perhaps
deriving functional equations for the moments and using ideas similar to
those appearing in turbulence theory could be helpful [71].
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A Boundary and initial conditions for the deter-
ministic equations

The governing equations (10) and (12) of the deterministic description have
to be solved with appropriate initial and boundary conditions compatible
with the stochastic description. The nondimensional initial and boundary
conditions for the TAF are Eqs. (46) and (47), respectively, and we also have
limy→±∞C = 0 [61]. We do not intend to follow the process of angiogenesis
beyond the time when vessel tips have arrived at the tumor and therefore
we do not give the latter a finite length. The boundary conditions for the
tip density are [51]

p+(t, 0, y, v, w) =
e−|v−v0|2∫∞

0

∫∞
−∞ |v′| e−|v

′−v0|2dv′ dw′

×
[
j0(t, y)−

∫ 0

−∞

∫ ∞
−∞
|v′| p−(t, 0, y, v′, w′)dv′dw′

]
, (A.1)

p−(t, 1, y, v, w) =
e−|v−v0|2∫ 0

−∞
∫∞
−∞ e

−|v′−v0|2dv′ dw′

×
[
p̃(t, 1, y)−

∫ ∞
0

∫ ∞
−∞

p+(t, 1, y, v′, w′)dv′dw′
]
, (A.2)

p(t,x,v)→ 0 as |v| → ∞, (A.3)

where p+ = p for v > 0 and p− = p for v < 0, v = (v, w). At x = 0, j(t,x)
given by Eq. (13) is

j0(t, y) = α(C(t, 0, y)) p(t, 0, y, v0, w0), (A.4)

for the vector velocity v0 = (v0, w0), with |v0| = 1. The deterministic
description including boundary conditions can be proved to have a solu-
tion [78, 79]. A convergent numerical scheme to solve the initial boundary
value problem corresponding to the deterministic description is studied in
Ref. [80].
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B Collective coordinates for a soliton far from pri-
mary vessel and tumor

To obtain Eqs. (38)-(40), we need to substitute the soliton Eq. (29) into
Eq. (19). According to Eq. (29), the soliton is a function

Ps = Ps

(
ξ;K, c, µ(C), Fξ

(
C,
∂C

∂ξ

))
, (B.1)

in which we have distinguished the fast coordinate ξ in Eq. (29) from the
slowly varying coordinate ξ = ψ resulting from averages of the TAF density.
Assuming that µ(C) is approximately constant, we have the expressions in
Eqs. (33), (34) and

∂Ps
∂t

=
∂Ps
∂K

K̇+
∂Ps
∂c

ċ+
∂Ps

∂Fξ

∂Fξ
∂t

, (B.2)

Fξ =
δ

β

V̂ · ∇xC
(1 + Γ1C)q

=
δ V̂ · ∇x(1 + Γ1C)1−q

β(1− q)Γ1
, (B.3)

∂Fξ
∂t

= φ̇Fη +
δ/β

(1− q)Γ1

∂

∂ξ

∂

∂t
(1 + Γ1C)1−q

=
δ

β

∂

∂ξ

[
∂C
∂t

(1+Γ1C)q

]
+ φ̇Fη, (B.4)

where we have used ∂V̂/∂t = φ̇V̂⊥. Setting ∂C/∂t = 0 on the right-hand
side of Eq. (B.4), we obtain

∂Fξ
∂t

= φ̇ Fη. (B.5)

Note now that Ps in Eq. (29) is a function of the ratios Fξ/c and ξ/c.
Then we have

∂Ps
∂c

= −ξ
c

∂Ps
∂ξ
−
Fξ
c

∂Ps

∂Fξ
=⇒ ∂Ps

∂Fξ
= − 1

Fξ

(
ξ
∂Ps
∂ξ

+ c
∂Ps
∂c

)
. (B.6)

The soliton of Eq. (29) satisfies

(Fξ − c)
∂Ps
∂ξ

= µPs − gPs
∫ t

0
Ps(ξ(s)) ds, (B.7)

in which Fξ and µ vary slowly with ξ and t. Integration by parts shows that∫ ∞
−∞

η
e−

η2

σ2

√
πσ

Ψ(η)dη =
σ2

2

∫ ∞
−∞

e−
η2

σ2

√
πσ

∂Ψ

∂η
dη. (B.8)
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Using Eq. (B.8), Eq. (19) becomes

∂p̃

∂t
+

∂

∂ξ

(
(Fξ − c)p̃+

σ2

2
φ̇
∂p̃

∂η
− 1

2β

∂p̃

∂ξ

)
+

∂

∂η

(
(Fη − ξφ̇)p̃− 1

2β

∂p̃

∂η

)
= µ p̃− Γp̃

∫ t

0
p̃(s, ξ(s), η(s)) ds. (B.9)

We now integrate this expression with respect to η̃ = η/σ using the Gaussian
approximation Eq. (22) for p̃. As we set σ → 0, the result is Eq. (23).
When we insert Eqs. (B.2), (B.5), (B.6) and (B.7) into Eq. (23), we obtain
Eqs. (35)-(36). For φ̇ = 0, the CCEs of the soliton, Eqs. (44)-(45), are the
same as those found in Ref. [61] if we replace g instead of Γ in the latter
reference.
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