1,905 research outputs found
The Lived Experience of Cultural Immersion
This article presents the findings of a grounded theory study of 3 graduate students\u27 lived experience of cultural immersion. Results indicated that participants experienced 3 phases (goal setting, interaction, and evaluation) and 4 themes (bias, gender, barriers, and self-awareness) during immersion. Recommendations for the implementation of immersion experiences are discussed
A Comparative Study of the Valence Electronic Excitations of N_2 by Inelastic X-ray and Electron Scattering
Bound state, valence electronic excitation spectra of N_2 are probed by
nonresonant inelastic x-ray and electron scattering. Within the usual
theoretical treatments, dynamical structure factors derived from the two probes
should be identical. However, we find strong disagreements outside the dipole
scattering limit, even at high probe energies. This suggests an unexpectedly
important contribution from intra-molecular multiple scattering of the probe
electron from core electrons or the nucleus. These effects should grow
progressively stronger as the atomic number of the target species increases.Comment: Submitted to Physical Review Letters April 27, 2010. 12 pages
including 2 figure pages
Adapting SAM for CDF
The CDF and D0 experiments probe the high-energy frontier and as they do so
have accumulated hundreds of Terabytes of data on the way to petabytes of data
over the next two years. The experiments have made a commitment to use the
developing Grid based on the SAM system to handle these data. The D0 SAM has
been extended for use in CDF as common patterns of design emerged to meet the
similar requirements of these experiments. The process by which the merger was
achieved is explained with particular emphasis on lessons learned concerning
the database design patterns plus realization of the use cases.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics
(CHEP03), La Jolla, Ca, USA, March 2003, 4 pages, pdf format, TUAT00
Superscaling in inclusive electron-nucleus scattering
We investigate the degree to which the scaling functions derived
from cross sections for inclusive electron-nucleus quasi-elastic scattering
define the same function for different nuclei. In the region where the scaling
variable , we find that this superscaling is experimentally realized
to a high degree.Comment: Corrected previously mislabeled figures and cross references; 9
pages, 4 color figures, using BoxedEPS and REVTeX; email correspondence to
[email protected]
Producing valid statistics when legislation, culture, and medical practices differ for births at or before the threshold of survival: Report of a European workshop
To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Downloa
Muscle p70S6K phosphorylation in response to soy and dairy rich meals in middle aged men with metabolic syndrome: a randomised crossover trial
The mammalian target of rapamycin (mTOR) pathway is the primary regulator of muscle protein synthesis. Metabolic syndrome (MetS) is characterized by central obesity and insulin resistance; little is known about how MetS affects the sensitivity of the mTOR pathway to feeding
CheapStat: An Open-Source, “Do-It-Yourself” Potentiostat for Analytical and Educational Applications
Although potentiostats are the foundation of modern electrochemical research, they have seen relatively little application in resource poor settings, such as undergraduate laboratory courses and the developing world. One reason for the low penetration of potentiostats is their cost, as even the least expensive commercially available laboratory potentiostats sell for more than one thousand dollars. An inexpensive electrochemical workstation could thus prove useful in educational labs, and increase access to electrochemistry-based analytical techniques for food, drug and environmental monitoring. With these motivations in mind, we describe here the CheapStat, an inexpensive (<$80), open-source (software and hardware), hand-held potentiostat that can be constructed by anyone who is proficient at assembling circuits. This device supports a number of potential waveforms necessary to perform cyclic, square wave, linear sweep and anodic stripping voltammetry. As we demonstrate, it is suitable for a wide range of applications ranging from food- and drug-quality testing to environmental monitoring, rapid DNA detection, and educational exercises. The device's schematics, parts lists, circuit board layout files, sample experiments, and detailed assembly instructions are available in the supporting information and are released under an open hardware license
Dynamic Bayesian belief network to model the development of walking and cycling schemes
This paper aims to describe a model which represents the formulation of decision-making processes (over a number of years) affecting the step-changes of walking and cycling (WaC) schemes. These processes can be seen as being driven by a number of causal factors, many of which are associated with the attitudes of a variety of factors, in terms of both determining whether any scheme will be implemented and, if it is implemented, the extent to which it is used. The outputs of the model are pathways as to how the future might unfold (in terms of a number of future time steps) with respect to specific pedestrian and cyclist schemes. The transitions of the decision making processes are formulated using a qualitative simulation method, which describes the step-changes of the WaC scheme development. In this article a Bayesian belief network (BBN) theory is extended to model the influence between and within factors in the dynamic decision making process
Superscaling of Inclusive Electron Scattering from Nuclei
We investigate the degree to which the concept of superscaling, initially
developed within the framework of the relativistic Fermi gas model, applies to
inclusive electron scattering from nuclei. We find that data obtained from the
low energy loss side of the quasielastic peak exhibit the superscaling
property, i.e., the scaling functions f(\psi') are not only independent of
momentum transfer (the usual type of scaling: scaling of the first kind), but
coincide for A \geq 4 when plotted versus a dimensionless scaling variable
\psi' (scaling of the second kind). We use this behavior to study as yet poorly
understood properties of the inclusive response at large electron energy loss.Comment: 33 pages, 12 color EPS figures, LaTeX2e using BoxedEPSF macros; email
to [email protected]
Cooler Experiment Preparation
This research was sponsored by the National Science Foundation Grant NSF PHY 87-1440
- …