730 research outputs found
Prospects for near-infrared characterisation of hot Jupiters with VSI
In this paper, we study the feasibility of obtaining near-infrared spectra of
bright extrasolar planets with the 2nd generation VLTI Spectro-Imager
instrument (VSI), which has the required angular resolution to resolve nearby
hot Extrasolar Giant Planets (EGPs) from their host stars. Taking into account
fundamental noises, we simulate closure phase measurements of several
extrasolar systems using four 8-m telescopes at the VLT and a low spectral
resolution (R = 100). Synthetic planetary spectra from T. Barman are used as an
input. Standard chi2-fitting methods are then used to reconstruct planetary
spectra from the simulated data. These simulations show that low-resolution
spectra in the H and K bands can be retrieved with a good fidelity for half a
dozen targets in a reasonable observing time (about 10 hours, spread over a few
nights). Such observations would strongly constrain the planetary temperature
and albedo, the energy redistribution mechanisms, as well as the chemical
composition of their atmospheres. Systematic errors, not included in our
simulations, could be a serious limitation to these performance estimations.
The use of integrated optics is however expected to provide the required
instrumental stability (around 10^-4 on the closure phase) to enable the first
thorough characterisation of extrasolar planetary emission spectra in the
near-infrared.Comment: 10 pages, 8 figures, Proc. SPIE conference 7013 "Optical and Infrared
Interferometry" (Marseille 2008
SOAP-T: A tool to study the light-curve and radial velocity of a system with a transiting planet and a rotating spotted star
We present an improved version of SOAP (Boisse et al. 2012) named "SOAP-T",
which can generate the radial velocity variations and light-curves for systems
consisting of a rotating spotted star with a transiting planet. This tool can
be used to study the anomalies inside transit light-curves and the
Rossiter-McLaughlin effect, to better constrain the orbital configuration and
properties of planetary systems and active zones of their host stars. Tests of
the code are presented to illustrate its performance and to validate its
capability when compared with analytical models and real data. Finally, we
apply SOAP-T to the active star, HAT-P-11, observed by the NASA Kepler space
telescope and use this system to discuss the capability of this tool in
analyzing light-curves for the cases where the transiting planet overlaps with
the star's spots.Comment: 9 pages, 7 figures, accepted for publication in Astronomy and
Astrophysic
Metallicity of M dwarfs IV. A high-precision [Fe/H] and Teff technique from high-resolution optical spectra for M dwarfs
Aims. In this work we develop a technique to obtain high precision
determinations of both metallicity and effective temperature of M dwarfs in the
optical.
Methods. A new method is presented that makes use of the information of 4104
lines in the 530-690 nm spectral region. It consists in the measurement of
pseudo equivalent widths and their correlation with established scales of
[Fe/H] and .
Results. Our technique achieves a of 0.080.01 for [Fe/H],
9113 K for , and is valid in the (-0.85, 0.26 dex), (2800, 4100
K), and (M0.0, M5.0) intervals for [Fe/H], and spectral type
respectively. We also calculated the RMSE which estimates uncertainties
of the order of 0.12 dex for the metallicity and of 293 K for the effective
temperature. The technique has an activity limit and should only be used for
stars with . Our method is available
online at \url{http://www.astro.up.pt/resources/mcal}.Comment: Accepted in Astronomy and Astrophysics. Updated one important
reference in the introduction. Some typos correcte
The HARPS search for southern extra-solar planets XIX. Characterization and dynamics of the GJ876 planetary system
Precise radial-velocity measurements for data acquired with the HARPS
spectrograph infer that three planets orbit the M4 dwarf star GJ876. In
particular, we confirm the existence of planet "d", which orbits every 1.93785
days. We find that its orbit may have significant eccentricity (e=0.14), and
deduce a more accurate estimate of its minimum mass of 6.3 Earth masses.
Dynamical modeling of the HARPS measurements combined with literature
velocities from the Keck Observatory strongly constrain the orbital
inclinations of the "b" and "c" planets. We find that i_b = 48.9 degrees and
i_c = 48.1 degrees, which infers the true planet masses of M_b = 2.64 Jupiter
masses and M_c = 0.83 Jupiter masses, respectively. Radial velocities alone, in
this favorable case, can therefore fully determine the orbital architecture of
a multi-planet system, without the input from astrometry or transits.
The orbits of the two giant planets are nearly coplanar, and their 2:1 mean
motion resonance ensures stability over at least 5 Gyr. The libration amplitude
is smaller than 2 degrees, suggesting that it was damped by some dissipative
process during planet formation. The system has space for a stable fourth
planet in a 4:1 mean motion resonance with planet "b", with a period around 15
days. The radial velocity measurements constrain the mass of this possible
additional planet to be at most that of the Earth.Comment: 10 pages, 10 figures, accepted for publication in Astronomy &
Astrophysic
Characterization of the hot Neptune GJ 436b with Spitzer and ground-based observations
We present Spitzer Space Telescope infrared photometry of a secondary eclipse
of the hot Neptune GJ436b. The observations were obtained using the 8-micron
band of the InfraRed Array Camera (IRAC). The data spanning the predicted time
of secondary eclipse show a clear flux decrement with the expected shape and
duration. The observed eclipse depth of 0.58 mmag allows us to estimate a
blackbody brightness temperature of T_p = 717 +- 35 K at 8 microns. We compare
this infrared flux measurement to a model of the planetary thermal emission,
and show that this model reproduces properly the observed flux decrement. The
timing of the secondary eclipse confirms the non-zero orbital eccentricity of
the planet, while also increasing its precision (e = 0.14 +- 0.01). Additional
new spectroscopic and photometric observations allow us to estimate the
rotational period of the star and to assess the potential presence of another
planet.Comment: Accepted for publication in A&A on 11/09/2007; 7 pages, 6 figure
The HARPS search for southern extrasolar planets XXV. Results from the metal-poor sample
Searching for extrasolar planets around stars of different metallicity may
provide strong constraints to the models of planet formation and evolution. In
this paper we present the overall results of a HARPS (a high-precision
spectrograph mostly dedicated to deriving precise radial velocities) program to
search for planets orbiting a sample of 104 metal-poor stars (selected [Fe/H]
below -0.5). Radial velocity time series of each star are presented and
searched for signals using several statistical diagnostics. Stars with detected
signals are presented, including 3 attributed to the presence of previously
announced giant planets orbiting the stars HD171028, HD181720, and HD190984.
Several binary stars and at least one case of a coherent signal caused by
activity-related phenomena are presented. One very promising new, possible
giant planet orbiting the star HD107094 is discussed, and the results are
analyzed in light of the metallicity-giant planet correlation. We conclude that
the frequency of giant planets orbiting metal-poor stars may be higher than
previously thought, probably reflecting the higher precision of the HARPS
survey. In the metallicity domain of our sample, we also find evidence that the
frequency of planets is a steeply rising function of the stellar metal content,
as found for higher metallicity stars.Comment: Accepted for publication in A&
SOAP. A tool for the fast computation of photometry and radial velocity induced by stellar spots
We define and put at the disposal of the community SOAP, Spot Oscillation And
Planet, a software tool that simulates the effect of stellar spots and plages
on radial velocimetry and photometry. This paper describes the tool release and
provides instructions for its use. We present detailed tests with previous
computations and real data to assess the code's performance and to validate its
suitability. We characterize the variations of the radial velocity, line
bisector, and photometric amplitude as a function of the main variables:
projected stellar rotational velocity, filling factor of the spot, resolution
of the spectrograph, linear limb-darkening coefficient, latitude of the spot,
and inclination of the star. Finally, we model the spot distributions on the
active stars HD166435, TW Hya and HD189733 which reproduces the observations.
We show that the software is remarkably fast allowing several evolutions in its
capabilities that could be performed to study the next challenges in the
exoplanetary field connected with the stellar variability.Comment: 9 pages, 12 figures, 4 tables, accepted for publication in A&
The HARPS search for southern extra-solar planets. VI. A Neptune-mass planet around the nearby M dwarf Gl 581
We report the discovery of a Neptune-mass planet around Gl 581 (M3V, M = 0.31
Msol), based on precise Doppler measurements with the HARPS spectrograph at La
Silla Observatory. The radial velocities reveal a circular orbit of period P =
5.366 days and semi-amplitude K1 = 13.2 m/s. The resulting minimum mass of the
planet (m2 sin i) is only 0.052 Mjup = 0.97 Mnep = 16.6 Mearth making Gl 581b
one of the lightest extra-solar planet known to date. The Gl 581 planetary
system is only the third centered on an M dwarf, joining the Gl 876
three-planet system and the lone planet around Gl 436. Its discovery reinforces
the emerging tendency of such planets to be of low mass, and found at short
orbital periods. The statistical properties of the planets orbiting M dwarfs do
not seem to match a simple mass scaling of their counterparts around solar-type
stars.Comment: letter submitted to A&
Accurate Spitzer infrared radius measurement for the hot Neptune GJ 436b
We present Spitzer Space Telescope infrared photometry of a primary transit
of the hot Neptune GJ 436b. The observations were obtained using the 8 microns
band of the InfraRed Array Camera (IRAC). The high accuracy of the transit data
and the weak limb-darkening in the 8 microns IRAC band allow us to derive
(assuming M = 0.44 +- 0.04 Msun for the primary) a precise value for the
planetary radius (4.19 +0.21-0.16 Rearth), the stellar radius (0.463
+0.022-0.017 Rsun), the orbital inclination (85.90 +0.19-0.18 degrees) and
transit timing (2454280.78186 +0.00015-0.00008 HJD). Assuming current planet
models, an internal structure similar to that of Neptune with a small H/He
envelope is necessary to account for the measured radius of GJ 436b.Comment: Accepted for publication in A&A on 21/07/2007; 5 pages, 3 figure
The HARPS search for southern extra-solar planets XXXII. Only 4 planets in the Gl~581 system
The Gl 581 planetary system has generated wide interest, because its 4
planets include both the lowest mass planet known around a main sequence star
other than the Sun and the first super-Earth planet in the habitable zone of
its star. A recent paper announced the possible discovery of two additional
super-Earth planets in that system, one of which would be in the middle of the
habitable zone of Gl 581. The statistical significance of those two discoveries
has, however, been questioned. We have obtained 121 new radial velocity
measurements of Gl 581 with the HARPS spectrograph on the ESO 3.6 m telescope,
and analyse those together with our previous 119 measurements of that star to
examine these potential additional planets. We find that neither is likely to
exist with their proposed parameters. We also obtained photometric observations
with the 2.5 m Isaac Newton Telescope during a potential transit of the inner
planet, Gl 581e, which had a 5% geometric transit probability. Those
observations exclude transits for planet densities under 4 times the Earth
density within -0.2 sigma to +2.7 sigma of the predicted transit center.Comment: Submitted to Astronomy & Astrophysic
- …
