72 research outputs found

    Environnements immersifs et dispositifs numériques: Etudes expérimentales et approches distanciées

    Get PDF
    This paper proposes to discuss the theoretical and methodological issues applied to the study of immersive environments in information and communication sciences. Environments considered are digital devices that generate more or less strong effects of immersion (virtual reality, augmented reality, serious games, etc..). The authors question the renewal of a constructivist and ethno-methodological posture that will be put into test in various experiments. The paper concludes with an illustration of a methodology currently being tested on an industrial project

    Near-infrared transmission spectrum of the warm-uranus GJ 3470b with the Wide Field Camera-3 on the Hubble Space Telescope

    Full text link
    The atmospheric composition of low-mass exoplanets is the object of intense observational and theoretical investigations. GJ3470b is a warm uranus recently detected in transit across a bright late-type star. The transit of this planet has already been observed in several band passes from the ground and space, allowing observers to draw an intriguing yet incomplete transmission spectrum of the planet atmospheric limb. In particular, published data in the visible suggest the existence of a Rayleigh scattering slope, making GJ3470b a unique case among the known neptunes, while data obtained beyond 2 um are consistent with a flat infrared spectrum. The unexplored near-infrared spectral region between 1 and 2 um, is thus key to undertanding the atmospheric nature of GJ3470b. Here, we report on the first space-borne spectrum of GJ3470, obtained during one transit of the planet with WFC3 on board HST, operated in stare mode. The spectrum covers the 1.1--1.7-um region with a resolution of about 300. We retrieve the transmission spectrum of GJ3470b with a chromatic planet-to-star radius ratio precision of 0.15% (about one scale height) per 40-nm bins. At this precision, the spectrum appears featureless, in good agreement with ground-based and Spitzer infrared data at longer wavelengths, pointing to a flat transmission spectrum from 1 to 5 um. We present new simulations of transmission spectra for GJ3470b, which allow us to show that the HST/WFC3 observations rule out cloudless hydrogen-rich atmospheres (>10 sigma) as well as hydrogen-rich atmospheres with tholin haze (>5 sigma). Adding our near-infrared measurements to the full set of previously published data from 0.3 to 5 um, we find that a cloudy, hydrogen-rich atmosphere can explain the full transmission spectrum if, at the terminator, the clouds are located at low pressures (<1 mbar) or the water mixing ratio is extremely low (<1 ppm).Comment: Astronomy & Astrophysics, in press. 19 figures. 2 table

    The HARPS search for southern extra-solar planets: XXVIII. Two giant planets around M0 dwarfs

    Full text link
    Fewer giants planets are found around M dwarfs than around more massive stars, and this dependence of planetary characteristics on the mass of the central star is an important observational diagnostic of planetary formation theories. In part to improve on those statistics, we are monitoring the radial velocities of nearby M dwarfs with the HARPS spectrograph on the ESO 3.6 m telescope. We present here the detection of giant planets around two nearby M0 dwarfs: planets, with minimum masses of respectively 5 Jupiter masses and 1 Saturn mass, orbit around Gl 676A and HIP 12961. The latter is, by over a factor of two, the most massive planet found by radial velocity monitoring of an M dwarf, but its being found around an early M-dwarf is in approximate line with the upper envelope of the planetary vs stellar mass diagram. HIP 12961 ([Fe/H]=-0.07) is slightly more metal-rich than the average solar neighborhood ([Fe/H]=-0.17), and Gl 676A ([Fe/H=0.18) significantly so. The two stars together therefore reinforce the growing trend for giant planets being more frequent around more metal-rich M dwarfs, and the 5~Jupiter mass Gl 676Ab being found around a metal-rich star is consistent with the expectation that the most massive planets preferentially form in disks with large condensate masses.Comment: Corrected an error in the labelling of one line in Table

    The Earth as an extrasolar transiting planet: Earth's atmospheric composition and thickness revealed by Lunar eclipse observations

    Get PDF
    An important goal within the quest for detecting an Earth-like extrasolar planet, will be to identify atmospheric gaseous bio-signatures. Observations of the light transmitted through the Earth's atmosphere, as for an extrasolar planet, will be the first step for future comparisons. We have completed observations of the Earth during a Lunar eclipse, a unique situation similar to that of a transiting planet. We aim at showing what species could be detected in its atmosphere at optical wavelengths, where a lot of photons are available in the masked stellar light. We present observations of the 2008 August 16 Moon eclipse performed with the SOPHIE spectrograph at the Observatoire de Haute-Provence. Locating the spectrograph fibers in the penumbra of the eclipse, the Moon irradiance is then a mix of direct, unabsorbed Sun light and solar light that has passed through the Earth's limb. This mixture essentially reproduces what is recorded during the transit of an extrasolar planet. We report here the clear detection of several Earth atmospheric compounds in the transmission spectra, such as ozone, molecular oxygen, and neutral sodium as well as molecular nitrogen and oxygen through the Rayleigh signature. Moreover, we present a method that allows us to derive the thickness of the atmosphere versus the wavelength for penumbra eclipse observations. We quantitatively evaluate the altitude at which the atmosphere becomes transparent for important species like molecular oxygen and ozone, two species thought to be tightly linked to the presence of life. The molecular detections presented here are an encouraging first attempt, necessary to better prepare for the future of extremely-large telescopes and transiting Earth-like planets. Instruments like SOPHIE will be mandatory when characterizing the atmospheres of transiting Earth-like planets from the ground and searching for bio-marker signatures.Comment: 15 pages, 14 figures, 2 tables. Accepted for publication in Astronomy and Astrophysic

    Detection of "Flavescence dorée" Grapevine Disease Using Unmanned Aerial Vehicle (UAV) Multispectral Imagery

    Get PDF
    Flavescence dorée is a grapevine disease affecting European vineyards which has severe economic consequences and containing its spread is therefore considered as a major challenge for viticulture. Flavescence dorée is subject to mandatory pest control including removal of the infected vines and, in this context, automatic detection of Flavescence dorée symptomatic vines by unmanned aerial vehicle (UAV) remote sensing could constitute a key diagnosis instrument for growers. The objective of this paper is to evaluate the feasibility of discriminating the Flavescence dorée symptoms in red and white cultivars from healthy vine vegetation using UAV multispectral imagery. Exhaustive ground truth data and UAV multispectral imagery (visible and near-infrared domain) have been acquired in September 2015 over four selected vineyards in Southwest France. Spectral signatures of healthy and symptomatic plants were studied with a set of 20 variables computed from the UAV images (spectral bands, vegetation indices and biophysical parameters) using univariate and multivariate classification approaches. Best results were achieved with red cultivars (both using univariate and multivariate approaches). For white cultivars, results were not satisfactory either for the univariate or the multivariate. Nevertheless, external accuracy assessment show that despite problems of Flavescence dorée and healthy pixel misclassification, an operational Flavescence dorée mapping technique using UAV-based imagery can still be proposed

    A rocky planet transiting a nearby low-mass star

    Full text link
    M-dwarf stars -- hydrogen-burning stars that are smaller than 60 per cent of the size of the Sun -- are the most common class of star in our Galaxy and outnumber Sun-like stars by a ratio of 12:1. Recent results have shown that M dwarfs host Earth-sized planets in great numbers: the average number of M-dwarf planets that are between 0.5 to 1.5 times the size of Earth is at least 1.4 per star. The nearest such planets known to transit their star are 39 parsecs away, too distant for detailed follow-up observations to measure the planetary masses or to study their atmospheres. Here we report observations of GJ 1132b, a planet with a size of 1.2 Earth radii that is transiting a small star 12 parsecs away. Our Doppler mass measurement of GJ 1132b yields a density consistent with an Earth-like bulk composition, similar to the compositions of the six known exoplanets with masses less than six times that of the Earth and precisely measured densities. Receiving 19 times more stellar radiation than the Earth, the planet is too hot to be habitable but is cool enough to support a substantial atmosphere, one that has probably been considerably depleted of hydrogen. Because the host star is nearby and only 21 per cent the radius of the Sun, existing and upcoming telescopes will be able to observe the composition and dynamics of the planetary atmosphere.Comment: Published in Nature on 12 November 2015, available at http://dx.doi.org/10.1038/nature15762. This is the authors' version of the manuscrip

    A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b

    Get PDF
    Exoplanets orbiting close to their parent stars could lose some fraction of their atmospheres because of the extreme irradiation. Atmospheric mass loss primarily affects low-mass exoplanets, leading to suggest that hot rocky planets might have begun as Neptune-like, but subsequently lost all of their atmospheres; however, no confident measurements have hitherto been available. The signature of this loss could be observed in the ultraviolet spectrum, when the planet and its escaping atmosphere transit the star, giving rise to deeper and longer transit signatures than in the optical spectrum. Here we report that in the ultraviolet the Neptune-mass exoplanet GJ 436b (also known as Gliese 436b) has transit depths of 56.3 +/- 3.5% (1 sigma), far beyond the 0.69% optical transit depth. The ultraviolet transits repeatedly start ~2 h before, and end >3 h after the ~1 h optical transit, which is substantially different from one previous claim (based on an inaccurate ephemeris). We infer from this that the planet is surrounded and trailed by a large exospheric cloud composed mainly of hydrogen atoms. We estimate a mass-loss rate in the range of ~10^8-10^9 g/s, which today is far too small to deplete the atmosphere of a Neptune-like planet in the lifetime of the parent star, but would have been much greater in the past.Comment: Published in Nature on 25 June 2015. Preprint is 28 pages, 12 figures, 2 table

    Spitzer Observations of GJ 3470 b: A Very Low-density Neptune-size Planet Orbiting a Metal-rich M Dwarf

    Get PDF
    We present Spitzer/IRAC 4.5 μm transit photometry of GJ 3470 b, a Neptune-size planet orbiting an M1.5 dwarf star with a 3.3 day period recently discovered in the course of the HARPS M-dwarf survey. We refine the stellar parameters by employing purely empirical mass-luminosity and surface brightness relations constrained by our updated value for the mean stellar density, and additional information from new near-infrared spectroscopic observations. We derive a stellar mass of M_* = 0.539^(+0.047)_(-0.043) M_☉ and a radius of R_* = 0.568^(+0.037)_(-0.031)R_☉. We determine the host star of GJ 3470 b to be metal-rich, with a metallicity of [Fe/H] = +0.20 ± 0.10 and an effective temperature of T_(eff) = 3600 ± 100 K. The revised stellar parameters yield a planetary radius R_p = 4.83_(-0.21)^(+0.22)R_⊕ that is 13% larger than the value previously reported in the literature. We find a planetary mass M_p = 13.9^(+1.5)_(-1.4)M_⊕ that translates to a very low planetary density, P_p= 0.72^(+0.13)_(-0.12) g cm^(–3), which is 33% smaller than the original value. With a mean density half of that of GJ 436 b, GJ 3470 b is an example of a very low-density low-mass planet, similar to Kepler-11 d, Kepler-11 e, and Kepler-18 c, but orbiting a much brighter nearby star that is more conducive to follow-up studies
    corecore