984 research outputs found

    Prospects for near-infrared characterisation of hot Jupiters with VSI

    Full text link
    In this paper, we study the feasibility of obtaining near-infrared spectra of bright extrasolar planets with the 2nd generation VLTI Spectro-Imager instrument (VSI), which has the required angular resolution to resolve nearby hot Extrasolar Giant Planets (EGPs) from their host stars. Taking into account fundamental noises, we simulate closure phase measurements of several extrasolar systems using four 8-m telescopes at the VLT and a low spectral resolution (R = 100). Synthetic planetary spectra from T. Barman are used as an input. Standard chi2-fitting methods are then used to reconstruct planetary spectra from the simulated data. These simulations show that low-resolution spectra in the H and K bands can be retrieved with a good fidelity for half a dozen targets in a reasonable observing time (about 10 hours, spread over a few nights). Such observations would strongly constrain the planetary temperature and albedo, the energy redistribution mechanisms, as well as the chemical composition of their atmospheres. Systematic errors, not included in our simulations, could be a serious limitation to these performance estimations. The use of integrated optics is however expected to provide the required instrumental stability (around 10^-4 on the closure phase) to enable the first thorough characterisation of extrasolar planetary emission spectra in the near-infrared.Comment: 10 pages, 8 figures, Proc. SPIE conference 7013 "Optical and Infrared Interferometry" (Marseille 2008

    The HARPS search for southern extra-solar planets XIX. Characterization and dynamics of the GJ876 planetary system

    Full text link
    Precise radial-velocity measurements for data acquired with the HARPS spectrograph infer that three planets orbit the M4 dwarf star GJ876. In particular, we confirm the existence of planet "d", which orbits every 1.93785 days. We find that its orbit may have significant eccentricity (e=0.14), and deduce a more accurate estimate of its minimum mass of 6.3 Earth masses. Dynamical modeling of the HARPS measurements combined with literature velocities from the Keck Observatory strongly constrain the orbital inclinations of the "b" and "c" planets. We find that i_b = 48.9 degrees and i_c = 48.1 degrees, which infers the true planet masses of M_b = 2.64 Jupiter masses and M_c = 0.83 Jupiter masses, respectively. Radial velocities alone, in this favorable case, can therefore fully determine the orbital architecture of a multi-planet system, without the input from astrometry or transits. The orbits of the two giant planets are nearly coplanar, and their 2:1 mean motion resonance ensures stability over at least 5 Gyr. The libration amplitude is smaller than 2 degrees, suggesting that it was damped by some dissipative process during planet formation. The system has space for a stable fourth planet in a 4:1 mean motion resonance with planet "b", with a period around 15 days. The radial velocity measurements constrain the mass of this possible additional planet to be at most that of the Earth.Comment: 10 pages, 10 figures, accepted for publication in Astronomy & Astrophysic

    The HARPS search for southern extra-solar planets. VI. A Neptune-mass planet around the nearby M dwarf Gl 581

    Full text link
    We report the discovery of a Neptune-mass planet around Gl 581 (M3V, M = 0.31 Msol), based on precise Doppler measurements with the HARPS spectrograph at La Silla Observatory. The radial velocities reveal a circular orbit of period P = 5.366 days and semi-amplitude K1 = 13.2 m/s. The resulting minimum mass of the planet (m2 sin i) is only 0.052 Mjup = 0.97 Mnep = 16.6 Mearth making Gl 581b one of the lightest extra-solar planet known to date. The Gl 581 planetary system is only the third centered on an M dwarf, joining the Gl 876 three-planet system and the lone planet around Gl 436. Its discovery reinforces the emerging tendency of such planets to be of low mass, and found at short orbital periods. The statistical properties of the planets orbiting M dwarfs do not seem to match a simple mass scaling of their counterparts around solar-type stars.Comment: letter submitted to A&

    Long-term magnetic activity of a sample of M-dwarf stars from the HARPS program II. Activity and radial velocity

    Full text link
    Due to their low mass and luminosity, M dwarfs are ideal targets if one hopes to find low-mass planets similar to Earth by using the radial velocity (RV) method. However, stellar magnetic cycles could add noise or even mimic the RV signal of a long-period companion. Following our previous work that studied the correlation between activity cycles and long-term RV variations for K dwarfs we now expand that research to the lower-end of the main sequence. Our objective is to detect any correlations between long-term activity variations and the observed RV of a sample of M dwarfs. We used a sample of 27 M-dwarfs with a median observational timespan of 5.9 years. The cross-correlation function (CCF) with its parameters RV, bisector inverse slope (BIS), full-width-at-half- maximum (FWHM) and contrast have been computed from the HARPS spectrum. The activity index have been derived using the Na I D doublet. These parameters were compared with the activity level of the stars to search for correlations. We detected RV variations up to ~5 m/s that we can attribute to activity cycle effects. However, only 36% of the stars with long-term activity variability appear to have their RV affected by magnetic cycles, on the typical timescale of ~6 years. Therefore, we suggest a careful analysis of activity data when searching for extrasolar planets using long-timespan RV data.Comment: 20 pages, 12 figures, 3 tables, accepted for publication in Astronomy and Astophysic

    Interfacial waves in the presence of wind and current: an asymptotic study

    Full text link
    We use asymptotic methods to study the evolution of short wavelength interfacial waves driven by the combined action of wind and current. We solve the Rayleigh equation for the stability of the shear flow, and construct a uniformly valid approximation for the perturbed streamfunction, or eigenfunction. We then expand the real part of the eigenvalue, the phase speed, in a power series of the inverse wavenumber and show that the imaginary part is exponentially small. We give expressions for the growth rates of the Miles (1957) and rippling (e.g., Young & Wolfe 2013) instabilities that are valid for an arbitrary shear flow. The accuracy of the results is demonstrated by a comparison with the exact solution of the eigenvalue problem in the case when both the wind and the current have an exponential profile

    M dwarf stars in the light of (future) exoplanet searches

    Full text link
    We present a brief overview of a splinter session on M dwarf stars as planet hosts that was organized as part of the Cool Stars 17 conference. The session was devoted to reviewing our current knowledge of M dwarf stars and exoplanets in order to prepare for current and future exoplanet searches focusing in low mass stars. We review the observational and theoretical challenges to characterize M dwarf stars and the importance of accurate fundamental parameters for the proper characterization of their exoplanets and our understanding on planet formation.Comment: 4 pages, 1 figure. Summary of the splinter session "M dwarf stars in the light of (future) exoplanet searches" held at the 17th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, June 28th 2012, Barcelona, Spain. Submitted for publication in Astronomische Nachrichten - Astronomical Notes (AN) 334, Issue 1-2, Eds Klaus Strassmeier and Mercedes L\'opez-Morale

    On the equilibrium rotation of Earth-like extra-solar planets

    Full text link
    The equilibrium rotation of tidally evolved "Earth-like" extra-solar planets is often assumed to be synchronous with their orbital mean motion. The same assumption persisted for Mercury and Venus until radar observations revealed their true spin rates. As many of these planets follow eccentric orbits and are believed to host dense atmospheres, we expect the equilibrium rotation to differ from the synchronous motion. Here we provide a general description of the allowed final equilibrium rotation states of these planets, and apply this to already discovered cases in which the mass is lower than twelve Earth-masses. At low obliquity and moderate eccentricity, it is shown that there are at most four distinct equilibrium possibilities, one of which can be retrograde. Because most presently known "Earth-like" planets present eccentric orbits, their equilibrium rotation is unlikely to be synchronous.Comment: 4 pages, 2 figures. accepted for publication in Astronomy and Astrophysics. to be published in Astronomy and Astrophysic

    A global analysis of Spitzer and new HARPS data confirms the loneliness and metal-richness of GJ 436 b

    Full text link
    Context. GJ 436b is one of the few transiting warm Neptunes for which a detailed characterisation of the atmosphere is possible, whereas its non-negligible orbital eccentricity calls for further investigation. Independent analyses of several individual datasets obtained with Spitzer have led to contradicting results attributed to the different techniques used to treat the instrumental effects. Aims. We aim at investigating these previous controversial results and developing our knowledge of the system based on the full Spitzer photometry dataset combined with new Doppler measurements obtained with the HARPS spectrograph. We also want to search for additional planets. Methods. We optimise aperture photometry techniques and the photometric deconvolution algorithm DECPHOT to improve the data reduction of the Spitzer photometry spanning wavelengths from 3-24 {\mu}m. Adding the high precision HARPS radial velocity data, we undertake a Bayesian global analysis of the system considering both instrumental and stellar effects on the flux variation. Results. We present a refined radius estimate of RP=4.10 +/- 0.16 R_Earth, mass MP=25.4 +/- 2.1 M_Earth and eccentricity e= 0.162 +/- 0.004 for GJ 436b. Our measured transit depths remain constant in time and wavelength, in disagreement with the results of previous studies. In addition, we find that the post-occultation flare-like structure at 3.6 {\mu}m that led to divergent results on the occultation depth measurement is spurious. We obtain occultation depths at 3.6, 5.8, and 8.0 {\mu}m that are shallower than in previous works, in particular at 3.6 {\mu}m. However, these depths still appear consistent with a metal-rich atmosphere depleted in methane and enhanced in CO/CO2, although perhaps less than previously thought. We find no evidence for a potential planetary companion, stellar activity, nor for a stellar spin-orbit misalignment. [ABRIDGED]Comment: 25 pages, 26 figures, 8 tables, accepted for publication in A&
    corecore