4,974 research outputs found
Second-Order Nonlinear Optical Properties of Multiaddressable Indolinooxazolidine Derivatives: Joint Computational and Hyper-Rayleigh Scattering Investigations
The linear and nonlinear optical (NLO) properties of two indolinooxazolidine derivatives acting as multiaddressable switches are reported. The second-order hyperpolarizability contrasts upon commutation between their closed and open forms are characterized using hyper-Rayleigh scattering (HRS) measurements, and rationalized by means of density functional theory and post Hartree–Fock ab initio calculations. It is evidenced that the addition of a withdrawing substituent on the indolinic subunit leads to a more effective photoinduced charge transfer while decreasing the transition energy of the S0 → S1 transition, which induces a significant enhancement of the HRS response of the open form. This substitution is however detrimental to the NLO contrast, due to the concomitant increase of the HRS response of the closed form
Thermoelastic Noise and Homogeneous Thermal Noise in Finite Sized Gravitational-Wave Test Masses
An analysis is given of thermoelastic noise (thermal noise due to
thermoelastic dissipation) in finite sized test masses of laser interferometer
gravitational-wave detectors. Finite-size effects increase the thermoelastic
noise by a modest amount; for example, for the sapphire test masses tentatively
planned for LIGO-II and plausible beam-spot radii, the increase is less than or
of order 10 per cent. As a side issue, errors are pointed out in the currently
used formulas for conventional, homogeneous thermal noise (noise associated
with dissipation which is homogeneous and described by an imaginary part of the
Young's modulus) in finite sized test masses. Correction of these errors
increases the homogeneous thermal noise by less than or of order 5 per cent for
LIGO-II-type configurations.Comment: 10 pages and 3 figures; RevTeX; submitted to Physical Review
Thermal and back-action noises in dual-sphere gravitational-waves detectors
We study the sensitivity limits of a broadband gravitational-waves detector
based on dual resonators such as nested spheres. We determine both the thermal
and back-action noises when the resonators displacements are read-out with an
optomechanical sensor. We analyze the contributions of all mechanical modes,
using a new method to deal with the force-displacement transfer functions in
the intermediate frequency domain between the two gravitational-waves sensitive
modes associated with each resonator. This method gives an accurate estimate of
the mechanical response, together with an evaluation of the estimate error. We
show that very high sensitivities can be reached on a wide frequency band for
realistic parameters in the case of a dual-sphere detector.Comment: 10 pages, 7 figure
Internal thermal noise in the LIGO test masses : a direct approach
The internal thermal noise in LIGO's test masses is analyzed by a new
technique, a direct application of the Fluctuation-Dissipation Theorem to
LIGO's readout observable, (longitudinal position of test-mass face,
weighted by laser beam's Gaussian profile). Previous analyses, which relied on
a normal-mode decomposition of the test-mass motion, were valid only if the
dissipation is uniformally distributed over the test-mass interior, and they
converged reliably to a final answer only when the beam size was a
non-negligible fraction of the test-mass cross section. This paper's direct
analysis, by contrast, can handle inhomogeneous dissipation and arbitrary beam
sizes. In the domain of validity of the previous analysis, the two methods give
the same answer for , the spectral density of thermal noise, to within
expected accuracy. The new analysis predicts that thermal noise due to
dissipation concentrated in the test mass's front face (e.g. due to mirror
coating) scales as , by contrast with homogeneous dissipation, which
scales as ( is the beam radius); so surface dissipation could
become significant for small beam sizes.Comment: 6 pages, RevTex, 1 figur
Optomechanical characterization of acoustic modes in a mirror
We present an experimental study of the internal mechanical vibration modes
of a mirror. We determine the frequency repartition of acoustic resonances via
a spectral analysis of the Brownian motion of the mirror, and the spatial
profile of the acoustic modes by monitoring their mechanical response to a
resonant radiation pressure force swept across the mirror surface. We have
applied this technique to mirrors with cylindrical and plano-convex geometries,
and compared the experimental results to theoretical predictions. We have in
particular observed the gaussian modes predicted for plano-convex mirrors.Comment: 8 pages, 8 figures, RevTe
Noise spectroscopy of optical microcavity
The intensity noise spectrum of the light passed through an optical
microcavity is calculated with allowance for thermal fluctuations of its
thickness. The spectrum thus obtained reveals a peak at the frequency of
acoustic mode localized inside the microcavity and depends on the size of the
illuminated area. The estimates of the noise magnitude show that it can be
detected using the up-to-date noise spectroscopy technique.Comment: 10 pages, 1 figur
Thermal noise in half infinite mirrors with non-uniform loss: a slab of excess loss in a half infinite mirror
We calculate the thermal noise in half-infinite mirrors containing a layer of
arbitrary thickness and depth made of excessively lossy material but with the
same elastic material properties as the substrate. For the special case of a
thin lossy layer on the surface of the mirror, the excess noise scales as the
ratio of the coating loss to the substrate loss and as the ratio of the coating
thickness to the laser beam spot size. Assuming a silica substrate with a loss
function of 3x10-8 the coating loss must be less than 3x10-5 for a 6 cm spot
size and a 7 micrometers thick coating to avoid increasing the spectral density
of displacement noise by more than 10%. A similar number is obtained for
sapphire test masses.Comment: Passed LSC (internal) review. Submitted to Phys. Rev. D. (5/2001)
Replacement: Minor typo in Eq. 17 correcte
Cooling of a mirror by radiation pressure
We describe an experiment in which a mirror is cooled by the radiation
pressure of light. A high-finesse optical cavity with a mirror coated on a
mechanical resonator is used as an optomechanical sensor of the Brownian motion
of the mirror. A feedback mechanism controls this motion via the radiation
pressure of a laser beam reflected on the mirror. We have observed either a
cooling or a heating of the mirror, depending on the gain of the feedback loop.Comment: 4 pages, 6 figures, RevTe
Huge Electro-/photo-/acidoinduced Second-order Nonlinear Contrasts from Multiaddressable Indolinooxazolodine
In this work, linear and nonlinear optical properties of electro-/acido-/photoswitchable indolino[2,1-b]oxazolidine derivatives were investigated. The linear optical properties of the closed and open forms have been characterized by UV–visible and IR spectroscopies associated with DFT calculations. Nonlinear optical properties of the compounds have been obtained by ex situ and in situ hyper-Rayleigh experiments in solution. We show that protonated, oxidized, and irradiated open forms exhibit the same visible absorption and NLO features. In particular, the closed and open forms exhibit a huge contrast of the first hyperpolarizability with an enhancement factor of 40–45. Additionally, we have designed an original electrochemical cell that allows to monitor in situ the hyper-Rayleigh response upon electrical stimulus. We report notably a partial but good and reversible NLO contrast in situ during oxidation/reduction cycles. Thereby, indolinooxazolidine moieties are versatile trimodal switchable units which are very promising for applications in devices
The variable finesse locking technique
Virgo is a power recycled Michelson interferometer, with 3 km long Fabry-Perot cavities in the arms. The locking of the interferometer has been obtained with an original lock acquisition technique. The main idea is to lock the instrument away from its working point. Lock is obtained by misaligning the power recycling mirror and detuning the Michelson from the dark fringe. In this way, a good fraction of light escapes through the antisymmetric port and the power build-up inside the recycling cavity is extremely low. The benefit is that all the degrees of freedom are controlled when they are almost decoupled, and the linewidth of the recycling cavity is large. The interferometer is then adiabatically brought on to the dark fringe. This technique is referred to as variable finesse, since the recycling cavity is considered as a variable finesse Fabry-Perot. This technique has been widely tested and allows us to reach the dark fringe in few minutes, in an essentially deterministic way
- …