388 research outputs found

    Optical properties of carbon nanofiber photonic crystals

    Get PDF
    Carbon nanofibers (CNF) are used as components of planar photonic crystals. Square and rectangular lattices and random patterns of vertically aligned CNF were fabricated and their properties studied using ellipsometry. We show that detailed information such as symmetry directions and the band structure of these novel materials can be extracted from considerations of the polarization state in the specular beam. The refractive index of the individual nanofibers was found to be n_CNF = 4.1.Comment: 10 pages, 4 figure

    Wegener’s granulomatosis mimicking a parotid abscess

    Get PDF
    We present the case of a previously healthy 59-year-old man who was under treatment for scleritis and episcleritis when he developed a parotid-gland swelling and pus-producing sinus. On surgical exploration, the features were those of a parotid abscess, but the lesion not only failed to heal post-operatively but increased in size very significantly. There was also severe necrotizing keratitis of the eyes. Due to clinical suspicion and a positive antineutrophil cytoplasmic antibodies test, Wegener’s granulomatosis was diagnosed and the patient successfully treated with cyclophosphamide and steroids. Previously, a number of cases of Wegener’s granulomatosis causing salivary-gland swelling have been reported in the literature; this is the first case in which the disease has masqueraded as a parotid abscess

    Intermittency transitions to strange nonchaotic attractors in a quasiperiodically driven Duffing oscillator

    Full text link
    Different mechanisms for the creation of strange nonchaotic attractors (SNAs) are studied in a two-frequency parametrically driven Duffing oscillator. We focus on intermittency transitions in particular, and show that SNAs in this system are created through quasiperiodic saddle-node bifurcations (Type-I intermittency) as well as through a quasiperiodic subharmonic bifurcation (Type-III intermittency). The intermittent attractors are characterized via a number of Lyapunov measures including the behavior of the largest nontrivial Lyapunov exponent and its variance as well as through distributions of finite-time Lyapunov exponents. These attractors are ubiquitous in quasiperiodically driven systems; the regions of occurrence of various SNAs are identified in a phase diagram of the Duffing system.Comment: 24 pages, RevTeX 4, 12 EPS figure

    Modified spin-wave study of random antiferromagnetic-ferromagnetic spin chains

    Full text link
    We study the thermodynamics of one-dimensional quantum spin-1/2 Heisenberg ferromagnetic system with random antiferromagnetic impurity bonds. In the dilute impurity limit, we generalize the modified spin-wave theory for random spin chains, where local chemical potentials for spin-waves in ferromagnetic spin segments are introduced to ensure zero magnetization at finite temperature. This approach successfully describes the crossover from behavior of pure one-dimensional ferromagnet at high temperatures to a distinct Curie behavior due to randomness at low temperatures. We discuss the effects of impurity bond strength and concentration on the crossover and low temperature behavior.Comment: 14 pages, 7 eps figure

    A novel microdeletion syndrome at 3q13.31 characterised by developmental delay, postnatal overgrowth, hypoplastic male genitals, and characteristic facial features

    Get PDF
    Item does not contain fulltextBACKGROUND: Congenital deletions affecting 3q11q23 have rarely been reported and only five cases have been molecularly characterised. Genotype-phenotype correlation has been hampered by the variable sizes and breakpoints of the deletions. In this study, 14 novel patients with deletions in 3q11q23 were investigated and compared with 13 previously reported patients. METHODS: Clinical data were collected from 14 novel patients that had been investigated by high resolution microarray techniques. Molecular investigation and updated clinical information of one cytogenetically previously reported patient were also included. RESULTS: The molecular investigation identified deletions in the region 3q12.3q21.3 with different boundaries and variable sizes. The smallest studied deletion was 580 kb, located in 3q13.31. Genotype-phenotype comparison in 24 patients sharing this shortest region of overlapping deletion revealed several common major characteristics including significant developmental delay, muscular hypotonia, a high arched palate, and recognisable facial features including a short philtrum and protruding lips. Abnormal genitalia were found in the majority of males, several having micropenis. Finally, a postnatal growth pattern above the mean was apparent. The 580 kb deleted region includes five RefSeq genes and two of them are strong candidate genes for the developmental delay: DRD3 and ZBTB20. CONCLUSION: A newly recognised 3q13.31 microdeletion syndrome is delineated which is of diagnostic and prognostic value. Furthermore, two genes are suggested to be responsible for the main phenotype.1 februari 201

    Whole-genome array-CGH for detection of submicroscopic chromosomal imbalances in children with mental retardation

    Get PDF
    Chromosomal imbalances are the major cause of mental retardation (MR). Many of these imbalances are caused by submicroscopic deletions or duplications not detected by conventional cytogenetic methods. Microarray-based comparative genomic hybridization (array-CGH) is considered to be superior for the investigation of chromosomal aberrations in children with MR, and has been demonstrated to improve the diagnostic detection rate of these small chromosomal abnormalities. In this study we used 1 Mb genome-wide array-CGH to screen 48 children with MR and congenital malformations for submicroscopic chromosomal imbalances, where the underlying cause was unknown. All children were clinically investigated and subtelomere FISH analysis had been performed in all cases. Suspected microdeletion syndromes such as deletion 22q11.2, Williams-Beuren and Angelman syndromes were excluded before array-CGH analysis was performed. We identified de novo interstitial chromosomal imbalances in two patients (4%), and an interstitial deletion inherited from an affected mother in one patient (2%). In another two of the children (4%), suspected imbalances were detected but were also found in one of the non-affected parents. The yield of identified de novo alterations detected in this study is somewhat less than previously described, and might reflect the importance of which selection criterion of patients to be used before array-CGH analysis is performed. However, array-CGH proved to be a high-quality and reliable tool for genome-wide screening of MR patients of unknown etiology

    Analysis of the IDS Gene in 38 Patients with Hunter Syndrome: The c.879G>A (p.Gln293Gln) Synonymous Variation in a Female Create Exonic Splicing

    Get PDF
    BACKGROUND: Hunter syndrome (mucopolysaccharidosis type II, MPS II) is a rare disease inherited in an X-linked autosomal recessive pattern. It is the prevailing form of the mucopolysaccharidoses in China. Here we investigated mutations of IDS (iduronate 2-sulfatase) gene in 38 unrelated Chinese patients, one of which is a female. METHODS: Peripheral leucocytes were collected from the patients and the IDS gene was amplified to looking for the variations. For a female patient, the X chromosome status was analyzed by androgen receptor X-inactivation assay and the mutation impact on RNA level was further performed by reverse transcription polymerase chain reaction. RESULTS: We discovered that point mutations constituted the major form while mutations in codon p.R468 defined the largest number of patients in our cohort. Consistent with data from other ethnic groups, exons 9 and 3 had comparatively more mutations, while exon 2 had quite a few mutations unique to Chinese patients. Of the 30 different mutations identified, only 9 were novel: one was a premature termination mutation, i.e., c.196C>T (p.Gln66X); three were missense mutations, i.e., c.200T>C (p.Leu67Pro), c.215T>C (p.Leu72Pro), c.389C>T (p.Thr130Ile); one was a small deletion, i.e., c.1104_1122del19 (p.Ser369ArgfsX16); and one was a deletion that spanned both exons 8 and 9 deletion leading to gross structural changes in the IDS gene. In addition, a synonymous mutation c.879G>A (p.Gln293Gln) was identified in a female Hunter disease patient, which resulted in loss of the original splicing site, activated a cryptic splicing site upstream, leading to a 28 bp deletion and a premature termination at p. Tyr285GlufsX47. Together with concurrent skewed X-inactivation this was believed to facilitate the development of Hunter disease in this girl. CONCLUSIONS: In conclusion, the molecular analysis of IDS gene in Chinese patients confirmed the Hunter disease diagnosis and expanded the mutation and clinical spectrum of this devastating disorder

    An Amish founder variant consolidates disruption of CEP55 as a cause of hydranencephaly and renal dysplasia

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this record.The centrosomal protein 55 kDa (CEP55 (OMIM 610000)) plays a fundamental role in cell cycle regulation and cytokinesis. However, the precise role of CEP55 in human embryonic growth and development is yet to be fully defined. Here we identified a novel homozygous founder frameshift variant in CEP55, present at low frequency in the Amish community, in two siblings presenting with a lethal foetal disorder. The features of the condition are reminiscent of a Meckel-like syndrome comprising of Potter sequence, hydranencephaly, and cystic dysplastic kidneys. These findings, considered alongside two recent studies of single families reporting loss of function candidate variants in CEP55, confirm disruption of CEP55 function as a cause of this clinical spectrum and enable us to delineate the cardinal clinical features of this disorder, providing important new insights into early human development.Medical Research CouncilNewlife Foundation for disabled childre

    Gla-rich protein function as an anti-inflammatory agent in monocytes/macrophages: implications for calcification-related chronic inflammatory diseases

    Get PDF
    Calcification-related chronic inflammatory diseases are multifactorial pathological processes, involving a complex interplay between inflammation and calcification events in a positive feed-back loop driving disease progression. Gla-rich protein (GRP) is a vitamin K dependent protein (VKDP) shown to function as a calcification inhibitor in cardiovascular and articular tissues, and proposed as an anti-inflammatory agent in chondrocytes and synoviocytes, acting as a new crosstalk factor between these two interconnected events in osteoarthritis. However, a possible function of GRP in the immune system has never been studied. Here we focused our investigation in the involvement of GRP in the cell inflammatory response mechanisms, using a combination of freshly isolated human leucocytes and undifferentiated/differentiated THP-1 cell line. Our results demonstrate that VKDPs such as GRP and matrix gla protein (MGP) are synthesized and gamma-carboxylated in the majority of human immune system cells either involved in innate or adaptive immune responses. Stimulation of THP-1 monocytes/macrophages with LPS or hydroxyapatite (HA) up-regulated GRP expression, and treatments with GRP or GRP-coated basic calcium phosphate crystals resulted in the down-regulation of mediators of inflammation and inflammatory cytokines, independently of the protein gamma-carboxylation status. Moreover, overexpression of GRP in THP-1 cells rescued the inflammation induced by LPS and HA, by down-regulation of the proinflammatory cytokines TNF alpha, IL-1 beta and NFkB. Interestingly, GRP was detected at protein and mRNA levels in extracellular vesicles released by macrophages, which may act as vehicles for extracellular trafficking and release. Our data indicate GRP as an endogenous mediator of inflammatory responses acting as an anti-inflammatory agent in monocytes/macrophages. We propose that in a context of chronic inflammation and calcification-related pathologies, GRP might act as a novel molecular mediator linking inflammation and calcification events, with potential therapeutic application.Portuguese Science and Technology Foundation (FCT) [PTDC/SAU-ORG/117266/2010, PTDC/BIM-MEC/1168/2012, UID/Multi/ 04326/2013]; FCT fellowships [SFRH/BPD/70277/2010, SFRH/BD/111824/2015
    corecore