549 research outputs found

    A complete transition to clean household energy can save one–quarter of the healthy life lost to particulate matter pollution exposure in India

    Get PDF
    Exposure to fine particulate matter (PM _2.5 ) is a leading contributor to the disease burden in India, largely due to widespread household solid fuel use. The transition from solid to clean fuels in households has the potential to substantially improve public health. India has implemented large initiatives to promote clean fuel access, but how these initiatives will reduce PM _2.5 exposure and the associated health benefits have not yet been established. We quantified the impacts of a transition of household energy from solid fuel use to liquefied petroleum gas (LPG) on public health in India from ambient and household PM _2.5 exposure. We estimate that the transition to LPG would reduce ambient PM _2.5 concentrations by 25%. Reduced exposure to total PM _2.5 results in a 29% reduction in the loss of healthy life, preventing 348 000 (95% uncertainty interval, UI: 284 000–373 000) premature mortalities every year. Achieving these benefits requires a complete transition to LPG. If access to LPG is restricted to within 15 km of urban centres, then the health benefits of the clean fuel transition are reduced by 50%. If half of original solid fuel users continue to use solid fuels in addition to LPG, then the health benefits of the clean fuel transition are reduced by 75%. As the exposure–outcome associations are non–linear, it is critical for air pollution studies to consider the disease burden attributed to total PM _2.5 exposure, and not only the portion attributed to either ambient or household PM _2.5 exposure. Our work shows that a transition to clean household energy can substantially improve public health in India, however, these large public health benefits are dependent on the complete transition to clean fuels for all

    The genetics of antibody response to paratuberculosis in dairy cattle

    Get PDF

    Black-carbon absorption enhancement in the atmosphere determined by particle mixing state

    Get PDF
    Atmospheric black carbon makes an important but poorly quantified contribution to the warming of the global atmosphere. Laboratory and modelling studies have shown that the addition of non-black-carbon materials to black-carbon particles may enhance the particles’ light absorption by 50 to 60% by refracting and reflecting light. Real-world experimental evidence for this ‘lensing’ effect is scant and conflicting, showing that absorption enhancements can be less than 5% or as large as 140%. Here we present simultaneous quantifications of the composition and optical properties of individual atmospheric black-carbon particles. We show that particles with a mass ratio of non-black carbon to black carbon of less than 1.5, which is typical of fresh traffic sources, are best represented as having no absorption enhancement. In contrast, black-carbon particles with a ratio greater than 3, which is typical of biomass-burning emissions, are best described assuming optical lensing leading to an absorption enhancement. We introduce a generalized hybrid model approach for estimating scattering and absorption enhancements based on laboratory and atmospheric observations. We conclude that the occurrence of the absorption enhancement of black-carbon particles is determined by the particles’ mass ratio of non-black carbon to black carbon

    SIMILARITY-BASED MULTI-SOURCE TRANSFER LEARNING APPROACH FOR TIME SERIES CLASSIFICATION

    Get PDF
    This study aims to develop an effective method of classification concerning time series signals for machine state prediction to advance predictive maintenance (PdM). Conventional machine learning (ML) algorithms are widely adopted in PdM, however, most existing methods assume that the training (source) and testing (target) data follow the same distribution, and that labeled data are available in both source and target domains. For real-world PdM applications, the heterogeneity in machine original equipment manufacturers (OEMs), operating conditions, facility environment, and maintenance records collectively lead to heterogeneous distribution for data collected from different machines. This will significantly limit the performance of conventional ML algorithms in PdM. Moreover, labeling data is generally costly and time-consuming. Finally, industrial processes incorporate complex conditions, and unpredictable breakdown modes lead to extreme complexities for PdM. In this study, similarity-based multi-source transfer learning (SiMuS-TL) approach is proposed for real-time classification of time series signals. A new domain, called "mixed domain," is established to model the hidden similarities among the multiple sources and the target. The proposed SiMuS-TL model mainly includes three key steps: 1) learning group-based feature patterns, 2) developing group-based pre-trained models, and 3) weight transferring. The proposed SiMuS-TL model is validated by observing the state of the rotating machinery using a dataset collected on the Skill boss manufacturing system, publicly available standard bearing datasets, Case Western Reserve University (CWRU), and Paderborn University (PU) bearing datasets. The results of the performance comparison demonstrate that the proposed SiMuS-TL method outperformed conventional Support Vector Machine (SVM), Artificial Neural Network (ANN), and Transfer learning with neural networks (TLNN) without similarity-based transfer learning methods

    Ribosomal oxygenases are structurally conserved from prokaryotes to humans

    Get PDF
    2-Oxoglutarate (2OG)-dependent oxygenases have important roles in the regulation of gene expression via demethylation of N-methylated chromatin components1,2 and in the hydroxylation of transcription factors3 and splicing factor proteins4. Recently, 2OG-dependent oxygenases that catalyse hydroxylation of transfer RNA5,6,7 and ribosomal proteins8 have been shown to be important in translation relating to cellular growth, TH17-cell differentiation and translational accuracy9,10,11,12. The finding that ribosomal oxygenases (ROXs) occur in organisms ranging from prokaryotes to humans8 raises questions as to their structural and evolutionary relationships. In Escherichia coli, YcfD catalyses arginine hydroxylation in the ribosomal protein L16; in humans, MYC-induced nuclear antigen (MINA53; also known as MINA) and nucleolar protein 66 (NO66) catalyse histidine hydroxylation in the ribosomal proteins RPL27A and RPL8, respectively. The functional assignments of ROXs open therapeutic possibilities via either ROX inhibition or targeting of differentially modified ribosomes. Despite differences in the residue and protein selectivities of prokaryotic and eukaryotic ROXs, comparison of the crystal structures of E. coli YcfD and Rhodothermus marinus YcfD with those of human MINA53 and NO66 reveals highly conserved folds and novel dimerization modes defining a new structural subfamily of 2OG-dependent oxygenases. ROX structures with and without their substrates support their functional assignments as hydroxylases but not demethylases, and reveal how the subfamily has evolved to catalyse the hydroxylation of different residue side chains of ribosomal proteins. Comparison of ROX crystal structures with those of other JmjC-domain-containing hydroxylases, including the hypoxia-inducible factor asparaginyl hydroxylase FIH and histone Nε-methyl lysine demethylases, identifies branch points in 2OG-dependent oxygenase evolution and distinguishes between JmjC-containing hydroxylases and demethylases catalysing modifications of translational and transcriptional machinery. The structures reveal that new protein hydroxylation activities can evolve by changing the coordination position from which the iron-bound substrate-oxidizing species reacts. This coordination flexibility has probably contributed to the evolution of the wide range of reactions catalysed by oxygenases
    • …
    corecore