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Pritchard. The genetics of antibody response to paratuberculosis in dairy cattle 1 

Reducing paratuberculosis incidence in dairy cattle is not only of economic importance to 2 

dairy industries worldwide but essential in accounting for the societal and environmental 3 

considerations, such as the possible link with Crohn’s disease in humans, animal welfare, and 4 

greenhouse gas emissions. Testing cattle for paratuberculosis is important for its use in 5 

control programs and although the heritability of antibody response was low, breeding 6 

against the disease might be a good prospect as a preventative measure to assist together with 7 

other approaches in an overall control strategy. 8 
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ABSTRACT 16 

Genetic parameters were estimated for antibody response to paratuberculosis 17 

(Mycobacterium avium ssp. Paratuberculosis (MAP)) using milk ELISA test results, 18 

collected and analyzed by National Milk Records (NMR), from Holstein Friesian cows on 19 

UK dairy farms in their first three lactations. Milk ELISA test results were obtained from 20 

2007 to 2012 and combined with milk recording data and pedigree information. The reduced 21 

dataset edited for the purposes of genetic parameter estimation consisted of 148,054 milk 22 
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ELISA records from 64,645 lactations in 40,142 cows of 908 sires, recorded in 641 herds.  23 

Milk ELISA test results were loge-transformed and univariate analysis of three alternative 24 

animal models and equivalent sire models were considered. The most appropriate model 25 

included additive genetic and permanent environmental random effects, whereas maternal 26 

effects were significant according to likelihood ratio test and Akaike’s Information Criterion 27 

but not for Bayesian Information Criterion. Heritability and repeatability estimates were 0.06 28 

and 0.37 respectively for the chosen animal model and its equivalent sire model. A subset of 29 

the data including herds with greater than 10% positive tests gave a slightly higher 30 

heritability of 0.08. Favourable but generally low significant genetic correlations were 31 

obtained between antibody response with 305-d milk yield (-0.16), 305-d protein yield (-32 

0.16), loge-transformed lactation average somatic cell count (0.15), and the number of 33 

mastitis episodes (0.22). Thus, selection on the antibody response to paratuberculosis, should 34 

not be detrimental to production or udder health traits.  Testing cattle for paratuberculosis is 35 

important for its use in control programs and although the heritability of antibody response 36 

was low, breeding against the disease might be a good prospect as a preventative measure to 37 

assist together with other approaches in an overall control strategy. 38 

Key words: genetic parameters, paratuberculosis, milk ELISA 39 

INTRODUCTION 40 

Paratuberculosis (or Johne’s disease), caused by Mycobacterium avium subspecies 41 

paratuberculosis (MAP), occurs worldwide and is a fatal chronic enteritis to which grazing 42 

ruminants (domesticated and wild) are particularly susceptible. In Europe and North America 43 

it is considered endemic in dairy cattle with herd prevalence estimates expected to be higher 44 

than 50% (Lombard et al., 2013; Nielsen and Toft, 2009), which can result in great economic 45 

losses to the dairy industry (Raizman et al., 2009) due to decreased production, weight loss, 46 
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greater risk to other health problems, premature culling, reduced slaughter value, and the cost 47 

of veterinary expenses and control measures. The disease also compromises animal welfare 48 

(CHAWG, 2012) which is important to address in a society that is increasingly concerned 49 

about how animals are raised for food production.  Potentially, paratuberculosis could risk 50 

the reputation of the agri-food sector due to its pathological similarities with Crohn’s disease 51 

in humans (Groenendaal and Zagmutt, 2008; Sartor, 2005) together with the capability of the 52 

organism to persist in the environment and in a small number of cases it has been found to 53 

survive pasteurisation of milk (Van Brandt et al., 2011), water treatment (Aboagye and 54 

Rowe, 2011), and anaerobic digestion (Slana et al., 2011).  Although there is insufficient 55 

evidence of a causal link between MAP in livestock and Crohn’s Disease the UK Food 56 

Standards Agency has adopted a precautionary principle, which appeals for strategies to 57 

further minimise human exposure to MAP (Rubery, 2001).  58 

As yet, there is no cure for the disease and control strategies are based upon timely 59 

detection and culling of infected animals together with good hygiene practices to reduce 60 

transmission (Nielsen, 2009). In some countries voluntary Johne’s control programmes have 61 

been established (Bartlett and Pearse, 2012; Benedictus et al., 2000; Nielssen, 2007). 62 

However, diagnosis of MAP can prove difficult due to its long incubation period and the lack 63 

of accurate diagnostic tests (Nielsen, 2008). Diagnostic tests for the disease include serum 64 

and milk ELISA, faecal bacterial culture and PCR, skin tests, and IFN-γ assays. With a range 65 

of diagnostic tests and statistical methods used from populations of different countries with 66 

varying incidence levels several studies have indicated that antibody test response to MAP 67 

infection is heritable, with estimates ranging from 0.03 (Van Hulzen et al., 2011) to 0.23 68 

(Küpper et al., 2012). Breeding for disease resistance might be a good candidate as a 69 

preventative measure to assist along with other approaches to control paratuberculosis, 70 

particularly since vaccination is of limited efficacy and the disease is incurable.  Genetic 71 
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improvement of disease resistance is a slow and long-term process; however the results are 72 

permanent and cumulative. The heritability of Johne’s disease susceptibility has been 73 

estimated using milk ELISA (Mortensen et al., 2004; Attalla et al., 2010; van Hulzen et al., 74 

2011), slaughtered animals (Koets et al., 2000), blood serum (Gonda et al., 2006; Hinger et 75 

al., 2008; Berry et al., 2010) and fecal culture (Gonda et al., 2006, Küpper et al., 2012) from 76 

a number of countries.  Country-specific genetic parameter estimation is valuable as it can be 77 

influenced by disease prevalence (Kupper et al., 2012; Van Hulzen et al., 2011). The 78 

objectives of this study were 1) to estimate genetic parameters for antibody response to MAP 79 

in the UK Holstein Friesian population using milk ELISA test results and 2) to determine the 80 

genetic association between antibody response to MAP and production, health, and fertility 81 

traits.  82 

 MATERIALS AND METHODS 83 

Data source and editing 84 

Testing milk samples for indication of MAP infection in cows is a service available to 85 

farmers in the UK through National Milk Laboratories (NML), a division of National Milk 86 

Records (NMR), and uses the commercial milk ELISA IDEXX Pourquier* Mycobacterium 87 

paratuberculosis Screening Antibody Test (Idexx Laboratories Inc., Westbrook, ME) 88 

(Bartlett and Pearse, 2012). Herds enrolled in the Johne’s control programme have their 89 

milking cows tested every three months during routine herd recording. Milk ELISA test 90 

results from a five year period, 2007 to 2012, were obtained from 2,478 UK herds milking 91 

cows born in years 1998 to 2010. Milk ELISA test results were combined with milk 92 

recording data (production, fertility, health, pedigree) to obtain information for genetic 93 

parameter estimation of antibody response to MAP (AR-MAP).   94 
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Milk ELISA test results were loge-transformed resulting in a histogram 95 

approximating a normal distribution. An earlier study performed by Hinger et al. (2008) 96 

reported that loge-transformed ELISA test resulted in higher heritability and more robust 97 

parameter estimates than treating it as a positive/negative binary trait for MAP status. The 98 

following edits of the data were used for the analysis: 1) 100% Holstein Friesian; 2) at least 99 

50 animals per herd with tests and at least two positive tests per herd; 3) all animals required 100 

sire and dam records; 4) calving ages for lactation 1, 2, and 3 were 18 to 42 mo, 30 to 56 mo, 101 

42 to 70 mo; 5) dams were at least 18 mo at first calving; 6) DIM at Johnes antibody testing 102 

were 6 to 305d; 7) milk test was available within 10d of milk ELISA test and also between 6 103 

to 305d; 8) sires with at least 10 daughters and up to the first 200 daughters born in the test 104 

dataset were selected; and 9) at least 5 animals per milk herd-test-day.  The ELISA tests were 105 

categorized as positive if the sample to positive control (S/P) ratio was 0.3 or higher.  After 106 

editing, the dataset consisted of 40,142 cows from 641 herds with 64,645 lactations and 107 

148,054 milk ELISA records (mean 3.7 milk ELISA tests/cow). These animals were sired by 108 

908 bulls with records on 4,021 maternal grand-sires. The pedigrees of cows were traced up 109 

to six generations back resulting in a file containing the relationship of 166,841 animals, 110 

which was used for both animal and sire models. Table 1 provides a summary of counts for 111 

the number of animals, lactations, and tests in the edited dataset.  112 

Joint analysis of log-transformed ELISA test was carried out with both test-day and 113 

305-d lactational measures, which were milk weight at milk ELISA test (TDMY), loge 114 

transformed somatic cell count at test (TDSCC), 305-d milk yield (MY), 305-d protein yield 115 

(PY), 305-d fat yield (FY), loge-transformed lactation average somatic cell count (LSCC), 116 

number of mastitis episodes (NMAS), number of lameness episodes (NLAM), calving 117 

interval (CaI), days to first service (DFS), non-return at 56d (NR56), and number of 118 

inseminations (NINS). Further editing included 1) minimum 200 DIM during a lactation; 2) 119 
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animals required at least 6 SCC tests during a lactation for the calculation of LSCC; 3) CaI 120 

was between 300 and 600d; 4) DFS was not less than 20d and not later than 200 DIM; 5) 10 121 

or more inseminations until conception were grouped as 10; and 6) at least 5 animals per 122 

herd-year-season of calving where MY records were available. As defined by Pritchard et al. 123 

(2013) NMAS and NLAM was a count of the number of unique episodes within 0 to 305 124 

DIM. A summary of the above traits are shown in Table 2.  125 

Statistical analysis  126 

Univariate analysis. Genetic parameters of AR-MAP were estimated for both animal and sire 127 

models in ASReml (version Release 2.0) (Gilmour et al., 2006).  Significance of fixed effects 128 

were first tested using SAS (version 9.2) to construct models.  Model 1 fitted the additive 129 

direct and permanent environmental (due to repeated tests and lactations; on average 3.7 tests 130 

per cow) effects of the animal together with the residual error as random effects. The 131 

covariates, fixed and random effects for model 1 are shown in equation 1. 132 

𝑌𝑖𝑗𝑘𝑙 =  𝜇 + ℎ𝑡𝑑𝑖 + 𝑏𝑖𝑟𝑡ℎ𝑦𝑟𝑗 + 𝑙𝑎𝑐𝑡𝑘 + 𝛽1𝑋ℎ𝑒𝑡 + 𝛽 𝑋𝑟𝑒𝑐 +  𝛽3𝑋𝑎𝑔𝑒𝑇 + 𝛽4(𝑋𝑎𝑔𝑒𝑇)2 +133 

𝛽5𝑋𝑑𝑖𝑚 + 𝛽6(𝑋𝑑𝑖𝑚)2 + 𝛽7𝑋𝑇𝐷𝑀𝑌 + 𝛽8𝑋𝑎𝑔𝑒𝐷𝑎𝑚 + 𝑑𝑖𝑟𝑒𝑐𝑡𝑙 + 𝑝𝑒𝑙 +  𝑒𝑖𝑗𝑘𝑙    (1) 134 

where Yijkl = is an observation for AR-MAP; 𝜇 is the overall mean of trait Y; htdi = fixed 135 

effect of ith herd-test-day (effect specific to all cows on the same TD within a herd); birthyrj = 136 

fixed effect of the jth year of birth (1998 to 2010); lactk = fixed effect of kth parity number at 137 

test (1, 2, 3); 𝛽1 to 𝛽8 = linear and quadratic regression coefficients of dependent variable Y 138 

on heterosis (Xhet), recombination (Xrec), age at calving in months (Xage), DIM at test (Xdim), 139 

milk yield at test (XTDMY), age of dam in months (XageDam); directl = the random effect of 140 

animal l; pel = the permanent environmental effect of animal l; and 𝑒𝑖𝑗𝑘𝑙 = residual random 141 

error term. Heterosis (mean = 9.9%) and recombination loss (mean = 6.7%), which 142 

considered only two breeds (Holstein and Friesian), were calculated as shown in equations 2 143 

and 3 (Wall et al., 2005): 144 
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heterosis = PS(1-PD)+PD(1-PS)   (2) 145 

recombination loss = PD(1-PD)+PS(1-PS) (3) 146 

where PS and PD are the proportion of Holstein for the sire and dam, respectively.  147 

In the univariate analysis, it is assumed that the residual effects are independently distributed 148 

with variance 𝜎𝑒2, therefore, var(e) = I𝜎𝑒2 = R; var(a) =  A𝜎𝑎2 = G and cov(a,e) = cov(e,a) = 0, 149 

where I is the identity matrix, A is the numerator relationship matrix, and G and R are the 150 

(co)variance matrices for additive genetic (a) and residual (e) effects, respectively.  151 

Further models (Models 2 and 3) tested the additive maternal genetic effect and the 152 

genetic covariance between direct and maternal genetic as additional random effects. 153 

Significance was determined using a likelihood ratio test (LRT).  Models were compared that 154 

differed by one variance component and the additional effect was considered to have a 155 

significant influence when the difference between -2 log likelihood (logL) values was greater 156 

than the critical value 2.79. The test statistic follows a 50:50 mixture of chi-squared 157 

distributions with, respectively, 0 and 1 degree of freedom with a significance level of 0.05. 158 

Whilst increasing the number of parameters may increase the goodness-of-fit, there is a 159 

danger of over-parameterization (Schwarz, 1987). Therefore, to discourage over-fitting, the 160 

choice of model was also judged by Akaike’s Information Criterion AIC = –2logL + 2k 161 

(Wada and Kashiwagi, 1990) and the Bayesian Information Criterion BIC = –2logL + kln(n) 162 

(Schwarz, 1987; Abney et al., 2000) where k = number of independent estimated parameters, 163 

and n = total number of observations. The preferred model chosen by AIC and BIC is that 164 

with the lowest value. The equivalent sire model to the chosen animal model was also run for 165 

comparison of variance components as it is less computationally demanding.  For the sire 166 

model, heritability estimates were calculated as four times the sire variance component 167 

divided by the phenotypic variance. The ratio of permanent environmental variance to total 168 
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phenotypic variance (pe2) was calculated as permanent environmental variance minus three 169 

times the sire variance divided by the phenotypic variance.   170 

Bivariate analysis. Linear animal models were employed for bivariate analyses 171 

between AR-MAP with production, health, and fertility traits. The model for AR-MAP did 172 

not include the covariate milk yield at test when analysed with 305-d production traits due to 173 

their high correlation. However, the covariate was included for health and fertility traits. 174 

Furthermore, the bivariate model for AR-MAP excluded maternal genetic effects as 175 

preliminary results from univariate analysis found these not to be significant components 176 

determined by BIC for the animal model. For 305-d production, health and fertility traits a 177 

single measure was given per lactation in the same lactation that an animal was milk ELISA 178 

tested. However, a repeatability model was employed as some animals had milk ELISA tests 179 

in more than one lactation. The models for test-date and 305-d traits are shown by equations 180 

3 and 4 respectively:   181 

 𝑌𝑖𝑗𝑘𝑙 =  𝜇 + ℎ𝑡𝑑𝑖 + 𝑚𝑜𝑛𝑡ℎ𝑗 + 𝑙𝑎𝑐𝑡𝑘 + 𝛽1𝑋ℎ𝑒𝑡 + 𝛽2𝑋𝑟𝑒𝑐 + 𝛽3𝑋𝑎𝑔𝑒 + 𝛽4(𝑋𝑎𝑔𝑒)2 +182 

𝛽5𝑋𝑑𝑖𝑚 + 𝛽6(𝑋𝑑𝑖𝑚)2 + 𝑑𝑖𝑟𝑒𝑐𝑡𝑙 + 𝑝𝑒𝑙 +  𝑒𝑖𝑗𝑘𝑙     (4) 183 

𝑌𝑖𝑗𝑘𝑙 =  𝜇 + ℎ𝑦𝑠𝑖 + 𝑚𝑜𝑛𝑡ℎ𝑗 + 𝑙𝑎𝑐𝑡𝑘 +  𝛽1𝑋ℎ𝑒𝑡 + 𝛽2𝑋𝑟𝑒𝑐 +  𝛽3𝑋𝑎𝑔𝑒 + 𝛽4(𝑋𝑎𝑔𝑒)2 +184 

𝑑𝑖𝑟𝑒𝑐𝑡𝑙 + 𝑝𝑒𝑙 +  𝑒𝑖𝑗𝑘𝑙          (5) 185 

where Yijkl = is an observation for production, health or fertility; 𝜇 is the overall mean of trait 186 

Y; hysi = fixed effect of ith herd-by-year-by-season (4 seasons per year) of calving; htdi = 187 

fixed effect of ith herd-test-date; monthj = fixed effect of the jth month of calving (12 months);  188 

lactk = fixed effect of the kth lactation (3 lactations); 𝛽1 to 𝛽6 = linear and quadratic 189 

regression coefficients of dependent variable Y on heterosis (Xhet), recombination (Xrec), age 190 

at calving (Xage), DIM at test (Xdim); directl = the random effect of animal l; pel = the 191 

permanent environmental effect of animal l; and 𝑒𝑖𝑗𝑘𝑙 = residual random error term. All 192 

bivariate analyses included the additive genetic, permanent environmental (for repeatability 193 
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model) and residual variances together with corresponding covariances between both traits.   194 

It is assumed in the bivariate analyses shown in equation 6 that: 195 

𝑉𝑎𝑟 =  

⎝

⎜⎜
⎛

𝑎1
𝑎2
𝑝𝑒1
𝑝𝑒2
𝑒1
𝑒2 ⎠

⎟⎟
⎞

=

⎝

⎜
⎜
⎛

𝐴𝐺11 𝐴𝐺12 0 0 0 0
𝐴𝐺21 𝐴𝐺22 0 0 0 0

0 0 𝑃11 𝑃12 0 0
0 0 𝑃21 𝑃22 0 0
0 0 0 0 𝑅11 𝑅12
0 0 0 0 𝑅21 𝑅22⎠

⎟
⎟
⎞

   (6) 196 

Where a, pe and e are vector of random additive, permanent environment and residual effects 197 

for the traits respectively with correspondingly co-variances matrices G, P and R and A is the 198 

relationship matrix.  199 

Genetic parameters for AR-MAP were also estimated using three subsets of the edited 200 

dataset where herds were categorized according to the percentage of positive tests in a herd 201 

during the time frame of the study.  The three categories were ≤5% (225 herds), >5 and ≤10% 202 

(271 herds), and >10% (145 herds) positive tests.    203 

RESULTS AND DISCUSSION 204 

Genetic parameter estimation 205 

Variance components, heritability, and repeatability estimates of AR-MAP for the 206 

three linear animal models with differing random effects are shown in Table 3. Permanent 207 

environmental effect contributed about 25% to the phenotypic variance and estimates barely 208 

changed with the addition of maternal effects to the model. Similarly this was the case for 209 

additive genetic variance which had minimal change; it decreased slightly with the addition 210 

of maternal effects, but increased with the further addition of the covariance between direct 211 

and maternal genetic effects. The addition of each random effect was a significant 212 

improvement on the previous model according to the LRT and AIC indicating that model 3 213 

was the most suitable. However, determined by BIC we found that model 1 was the most 214 
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suitable which included the additive direct effect and the permanent environmental effect of 215 

the animal. All models gave very similar results with heritability estimates ranging from 0.06 216 

to 0.07 and a repeatability estimate of 0.31, and any of these models could potentially be used 217 

depending upon the criteria used.  218 

Sire models resulted in closely similar results to the animal model with heritability 219 

estimates also ranging from 0.06 to 0.07 and repeatability estimates ranging from 0.30 to 220 

0.31. The similarities between the results from animal and sire models confirm that the 221 

computationally less-demanding sire model can be employed if the interest is solely for bull 222 

selection (i.e., runtime for model 2 was 3 hours versus 10 minutes for the animal model and 223 

equivalent sire model respectively). The results from Hinger et al. (2008) were also virtually 224 

the same between sire and animal models (~0.10), whereas Mortensen et al. (2004) found 225 

results were slightly higher with the animal model (animal model 0.10, sire model 0.09) with 226 

both other studies using milk ELISA data, whilst Küpper et al. (2012) found higher estimates 227 

with the sire model where animals were tested by fecal culture.  The heritability, based upon 228 

milk ELISA test results, provides information about the genetic ability to produce antibodies 229 

against paratuberculosis. In our study the heritability was low (~0.06) but it was in line with 230 

other similar studies that used loge-transformed optical density values from milk ELISA tests 231 

in Danish Holstein (Mortensen et al., 2004), German Holstein (Hinger et al., 2008), Dutch 232 

Holstein Friesian (Van Hulzen et al., 2011), Irish Holstein Friesian (Bermingham et al., 233 

2010), and US Holstein (Attalla et al., 2010), which ranged from 0.03 to 0.10.  Furthermore, 234 

it is comparable to other disease traits that are generally low (Bermingham et al., 2010; 235 

Pritchard et al., 2013) 236 

Studies differ on whether the trait is measured as continuous or categorised as a 237 

binary trait (negative/positive) or categorical trait.  In Israeli Holstein (Shook et al., 2012) and 238 

Irish Holstein-Friesian (Berry et al., 2010) ELISA tests from serum were analysed as a binary 239 

10 
 



trait which gave heritability estimates of 0.16 and 0.15, respectively from a threshold model.  240 

Berry et al. (2010) also made the comparison between a threshold and a linear model, as well 241 

as analysing the trait as binary or continuous and obtained lower estimates from the linear 242 

model of 0.10 as a binary trait and 0.07 as a continuous trait.  243 

The three subsets that represented different herd incidence levels gave similar values 244 

to the full dataset with heritability estimates ranging from 0.06 to 0.08 and repeatability 245 

estimates ranging from 0.28 to 0.34 (Table 4). The subset including herds with greater than 246 

10% positive tests, which may imply higher prevalence, gave the largest heritability of 0.084 247 

of all subsets.  In Dutch Holstein-Friesian (Van Hulzen et al., 2011) and in German Holstein 248 

cows (Kupper et al., 2012) higher prevalence also resulted in higher heritability. The 249 

repeatability also increased with percentage increase of positive tests from 0.28 to 0.34.  250 

However, it should be noted that these subsets might not directly explain different prevalence 251 

levels and results could be influenced by data structure.  In the subset containing herds with 252 

the highest percentage of positive tests the number of tests per cow was higher (4.1 tests) and 253 

was lowest (3.4) in the subset containing herds with least positive tests.  Repeatabilities in 254 

this study were lower to those reported by Atalla et al. (2010) that ranged from 0.38 to 0.43. 255 

Repeatabilities were found to be higher in herd groups with a higher percentage of positive 256 

tests but also had a higher number of tests per cow.   257 

Maternal effects could exist due to intrauterine infection of the fetus, although the risk 258 

is considered to be relatively small (Adaska and Whitlock, 2012; Whittington and Windsor, 259 

2007), or the calf could be orally infected by ingesting MAP from the dam soon after birth 260 

through colostrum, milk, or feces (Nielsen et al., 2008; Sweeney, 1996).  In this study the 261 

contribution of maternal effects to phenotypic variance were small in magnitude (<1%), 262 

which has been similarly reported in other studies, e.g., <1% in the study of Mortensen et al. 263 

(2004) and 1.3% in the study of Atalla et al. (2010) using linear models. Including maternal 264 
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effects and the direct-maternal covariance resulted in an improved fit of the model by the 265 

LRT and AIC, however it was not the case determined by BIC. The data collected in this 266 

study is relatively recent and from a short time span.  Therefore, it is very unlikely there 267 

would be many dam-daughter pairs where both dam and daughter have milk ELISA results. 268 

Future analyses with a longer duration of test results could better examine the possible 269 

transmission from dam to daughter where both generations have test data available. However, 270 

recent farm management changes may have changed the pattern of infection from a very 271 

predominant dam daughter pattern of transmission to cohorts of animals showing up as 272 

ELISA positive. This is due to management practices such as multiple calving in an area and 273 

the pooled colostrum effect of one infectious cow infecting a whole cohort of calves 274 

(Kennedy et al., 2014).  275 

Some caution should be taken in interpreting the trait AR-MAP and its possible use as 276 

an indicator trait for selection as this study does not resolve differences between 277 

susceptibility/resistance and an animal’s ability to produce a humoral response. However, 278 

results from Bermingham et al. (2010) reported a strong positive genetic correlation (0.84; 279 

SE=0.20) between serological response to MAP and susceptibility to M. avium-purified 280 

protein derivative, which suggests that selection for reduced MAP responsiveness may 281 

indirectly increase resistance to MAP.  It is important though to monitor that selection for 282 

reduced MAP specific antibody response does not lead to selection of animals with an 283 

impaired humoral response. 284 

Genetic correlations 285 

Genetic, permanent environmental, residual, and phenotypic correlations between 286 

AR-MAP and production, health, and fertility traits and their heritability estimates are given 287 

in Table 5.  Genetic correlations between AR-MAP with MY, PY, and udder health traits 288 

were significant, whereas TDSCC, FY, NLAM and fertility traits were not significant. 289 
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Genetic correlations between NMAS and LSCC with AR-MAP were positive and similar in 290 

magnitude (0.15 to 0.22).  The genetic correlations between 305-d production traits and 291 

TDMY with AR-MAP were all negative and similar in magnitude (-0.14 to -0.16).   292 

Production. The genetic correlation between AR-MAP and 305d production traits 293 

indicate that breeding for animals more resistant to paratuberculosis should not be detrimental 294 

to yields of production traits, which supports the results of previous studies (Attalla et al., 295 

2010; Berry et al., 2010;  Mortenson et al., 2004). Mortenson et al., (2004) reported low and 296 

non-significant genetic correlations between AR-MAP and daily milk yield (-0.04). Attalla et 297 

al. (2010) similarly found a non-significant correlation between sire solutions for AR-MAP 298 

and predicted transmitting abilities for milk yield whereas for fat (-0.20) and protein yield (-299 

0.18) were significant and negative, which also suggest selection for these traits would reduce 300 

susceptibility to paratuberculosis. From a smaller dataset of 4,789 cows Berry et al. (2010) 301 

reported negative and significant genetic correlations between yield traits and AR-MAP as a 302 

binary trait, and negative but not different to zero when treated as a continuous trait. 303 

However, although with non-significant results, from another smaller dataset of 4,694 cows 304 

Shook et al. (2012) reported positive genetic correlations ranging from 0.15 to 0.22 between 305 

MAP and milk yield traits, which suggest that cows with high breeding values for milk yield 306 

would be more susceptible to MAP.  Or, from another perspective, higher yielders are more 307 

likely to succumb to the effects of infection due to the greater lactational stress of high yields 308 

whereas low yielders are more capable of existing with infection. This would be consistent 309 

with findings of Norton et al. (2010) where effects of infection were likely to worsen or 310 

positive tests were more common when animals were most stressed at calving or at peak milk 311 

production. The study of Shook et al. (2012) employed a recursive model which accounted 312 

for the effect of MAP infection on yield traits, which might explain the contradictory 313 

findings. Several phenotypic association studies also correspond to results from Shook et al. 314 
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(2012) indicating that cows capable of producing higher yields are more likely to succumb to 315 

the disease if infected (Hoogendam et al., 2009; Smith et al., 2009). The phenotypic 316 

correlations in this study were low and positive with MY and PY, but negative with TDMY 317 

and FY.   318 

Health. Few studies exist that have examined genetic associations between AR-MAP 319 

and any health traits. A significant positive genetic association was found in this study 320 

between AR-MAP and udder health traits, LSCC and NMAS, which would imply that 321 

animals predisposed to higher SCC or mastitis are also predisposed to higher antibody 322 

response, thus, breeding against paratuberculosis would in turn be favourable by improving 323 

udder health. Berry et al. (2010) however, found no significant genetic association between 324 

AR-MAP and SCC. However, these results are in line with several non-genetic studies that 325 

have found that ELISA positive cows tend to have higher somatic cell counts (Baptista et al., 326 

2008; McNab et al., 1991). Baptista et al. (2008) reported a strong positive phenotypic 327 

association however, pointed out that a causal relationship was not apparent between high 328 

SCC and AR-MAP. A causality dilemma exists as it is possible that a cow with MAP 329 

infection is more likely to have a higher SCC because of the ‘immune energy’ expended 330 

dealing with MAP or a cow dealing with mastitis is more likely to lose control of her 331 

previously controlled MAP infection and become test positive for MAP. Previous studies 332 

have reported positive genetic correlations (i.e. unfavourable) between udder health traits and 333 

production (Pritchard et al., 2013) therefore it is unexpected to have a negative genetic 334 

correlation between AR-MAP and production since there is a positive genetic correlation 335 

between the udder health traits and AR-MAP.   336 

Fertility. Genetic correlations between AR-MAP and fertility traits were all low, 337 

negative, and not significant, therefore genetic selection to reduce paratuberculosis should not 338 
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be detrimental to fertility. Berry et al. (2010) also found low non-significant negative 339 

correlations between AR-MAP and CaI.  340 

CONCLUSIONS 341 

Testing of cattle for paratuberculosis is important for its use in control programs and the 342 

results of this study show that the same field data could be used to develop breeding tools as 343 

part of an overall disease control strategy. This paper presents the first genetic analysis of 344 

milk ELISA test results in the UK, which signify antibody response to MAP, including 345 

correlations with other traits in the breeding goal. Despite the low heritability (<0.10) of AR- 346 

MAP there is still potential for genetic progress to be made. For instance, there has been a 347 

turnaround in the genetic trend of fertility in the UK almost immediately after the 348 

introduction of Fertility Index in 2005, although the fertility traits included have a heritability 349 

of 1-4% (Wall et al., 2003). Genetic improvement might be a long process, but the gains are 350 

permanent and cumulative in each generation. In the case of paratuberculosis vaccination is 351 

of limited efficacy at present and the disease is incurable therefore genetic improvement is a 352 

good candidate as one of the tools for prevention.  Selection for resistance to MAP reduces 353 

the likelihood of an animal becoming infected when exposed to the pathogen but also with 354 

fewer animals infected it will reduce the number of pathogens in the environment and 355 

therefore reduce exposure to the pathogen. Furthermore, genetic correlations with udder 356 

health traits were favourable and did not appear detrimental to production traits.   357 
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 482 

Table 1 Summary of animal, lactation, and test counts in edited dataset 483 

Lactation n of cows n  of tests 

1 25,843 61,279 

2 23,479 51,346 

3 15,323 35,429 

Overall 40,142 (64,645 lactations) 148,054 

 484 

 485 

21 
 



Table 2 Summary of traits used in bivariate analysis with milk ELISA over the first 3 486 

lactations  487 

Abbreviation Description Count Mean (sd) 

Test date measures 

AR-MAP loge transformed milk ELISA result 148,054 0.34 (2.02) 

TDMY Milk yield (Kg) at milk ELISA test 148,054 30.8 (9.15) 

TDSCC loge transformed SCC at milk ELISA test 148,054 10.9 (1.15) 

305-day lactation measures 

Production    

MY Kg of milk over a 305-d lactation 63,238 9148.27 (2095.21) 

PY Kg of protein over a 305-d lactation 63,238 291.45 (62.03) 

FY Kg of fat over a 305-d lactation 63,238 354.11 (81.33) 

Health    

LSCC Lactation average loge transformed SCC  61,953 11.33 (0.94) 

NMAS n of mastitis episodes within 0 to 305-d 29,526 0.26 (0.57) 

NLAM n of lameness episodes within 0 to 305-d 20,070 0.27 (0.58) 

Fertility    

CaI n of days from calving date of present 

lactation to calving date of next lactation 40,629 396.29 (60.96) 

DFS n of days from calving date of present 

lactation to date of first service 59,545 73.00 (29.63) 

NINS n of inseminations per conception 

(maximum of 10 inseminations) 41,946 2.29 (1.57) 

NR56 Non-return rate after 56d: 1 = a return to 57,919 1.64 (0.48) 
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service and 2 = no return to service 

 488 

Table 3 Variance components and heritability of antibody response from three animal models 489 

(models 1 to 3) and a sire model (equivalent to model 1) with se in parenthesis 490 

 Animal   Sire 

 Model 1 Model 2 Model 3 Model 1 

𝜎𝑎2 0.18 (0.018) 0.17 (0.018) 0.19 (0.021) 0.18 (0.021)  

𝜎𝑝𝑒2  0.70 (0.016) 0.70 (0.017) 0.70 (0.017) 0.69 (0.020)  

𝜎𝑚2   0.01 (0.006) 0.01 (0.007)   

𝜎𝑎𝑚2    -0.02 (0.010)   

𝜎𝑒2 1.96 (0.009) 1.96 (0.009) 1.96 (0.009) 1.96 (0.009)  

𝜎𝑝2 2.84 (0.013) 2.84 (0.013) 2.84 (0.013) 2.83 (0.013)  

h2 0.06 (0.006) 0.06 (0.006) 0.07 (0.007) 0.06 (0.007)  

pe2 0.25 (0.006) 0.25 (0.006) 0.25 (0.006) 0.24 (0.007)  

m2  0.003 (0.002) 0.00 (0.003)    

R 0.31 (0.003)  0.31 (0.004) 0.31 (0.005) 0.31 (0.003)  

logL -4738.83 -4736.97 -4734.88 -4798.58 

LRT - 3.72  4.18  - 

AIC 9481.66 9479.94 9477.76 - 

BIC 9501.47 9509.66 9517.38 - 

σ2
a direct additive effect; σ2

pe permanent environmental variance of animal; σ2
m maternal 491 

additive genetic variance; σ2
am genetic covariance between direct and maternal genetic 492 

effects;  σ2
e error variance; σ2

p phenotypic variance; h2 heritability; pe2 proportion of 493 

permanent environmental variance of animal to phenotypic variance; m2 proportion of 494 

maternal additive genetic variance to phenotypic variance; R repeatability; LRT Likelihood 495 
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Ratio Test; AIC Akaike’s Information Criterion; BIC Bayesian Information Criterion; model 496 

in bold most appropriate for LRT, AIC, or BIC. 497 

Table 4 Variance components and heritability of antibody response for different herd 498 

groupings from an animal model with se in parenthesis 499 

 Herd group 

 1 2 3 

𝜎𝑎2 0.18 (0.027) 0.18 (0.026) 0.23 (0.040) 

𝜎𝑝𝑒2  1.99 (0.015) 1.99 (0.013) 1.85 (0.017) 

𝜎𝑒2 0.59 (0.026) 0.74 (0.025) 0.73 (0.038) 

𝜎𝑝2 2.77 (0.020) 2.91 (0.020) 2.80 (0.028) 

h2 0.07 (0.010) 0.06 (0.009) 0.08 (0.014) 

pe2 0.21 (0.009) 0.25 (0.009) 0.26 (0.013) 

repeatability 0.28 (0.005) 0.32 (0.005) 0.34 (0.007) 

Herd group: 1) herds with <= 5% positive tests 2) herds with >5% and <=10% positive tests 500 

3) herds with >10% positive tests 501 

 502 

 503 

 504 

 505 

 506 

 507 

 508 

 509 
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Table 5 Estimates of heritability, genetic, permanent environmental, residual, and phenotypic 510 

correlations from an animal repeatability model between antibody response with production, 511 

health and fertility traits across the first three lactations with se  512 

Trait Heritability Genetic 

correlation 

Permanent 

environment 

correlation 

Residual 

correlation 

Phenotypic 

correlation 

TDMY 0.13±0.009 -0.14±0.062 s -0.13±0.018 -0.11±0.003 -0.12±0.003 

TDSCC 0.06±0.006 0.14±0.007 0.17±0.017 0.12±0.003 0.13±0.003 

MY 0.20±0.015 -0.16±0.062 s -0.19±0.023 0.04±0.006 0.09±0.005 

PY 0.29±0.014 -0.16±0.063 s -0.16±0.023 -0.03±0.006 0.08±0.005 

FY 0.20±0.014 -0.10±0.063 -0.14±0.024 -0.03±0.006 -0.06±0.005 

LSCC 0.10±0.010 0.15±0.071s 0.21±0.026 0.03±0.005 0.08±0.004 

NMAS 0.05±0.009 0.22±0.100s 0.05±0.040 0.00±0.007 0.02±0.006 

NLAM 0.01±0.007 0.04±0.180 -0.05±0.035 0.00±0.009 -0.01±0.007 

CaI 0.03±0.006 -0.11±0.106 -0.14±0.073 0.02±0.006 0.002±0.005 

DFS 0.05±0.007 -0.04±0.086 -0.06±0.041 0.01±0.005 -0.002±0.004 

NR56 0.01±0.003 -0.02±0.144 0.24±0.170 -0.003±0.005 0.007±0.004 

NINS 0.02±0.005 -0.11±0.121 -0.07±0.046 0.018±0.006 0.004±0.005 

S = significant; TDMY = test-date milk weight; TDSCC = test-date loge transformed somatic 513 

cell count; MY = 305-d milk yield; PY = 305-d protein yield; FY = 305-d fat yield; LSCC = 514 

loge-transformed lactation average somatic cell count; NMAS = number of mastitis episodes; 515 

NLAM = number lameness episodes; CaI = calving interval, DFS = days to first service; 516 

NR56 = non-return at 56-d; NINS = number of inseminations. 517 
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