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ABSTRACT 

This study aims to develop an effective method of 

classification concerning time series signals for machine state 

prediction to advance predictive maintenance (PdM).   

Conventional machine learning (ML) algorithms are widely 

adopted in PdM, however, most existing methods assume that 

the training (source) and testing (target) data follow the same 

distribution, and that labeled data are available in both source 

and target domains. For real-world PdM applications, the 

heterogeneity in machine original equipment manufacturers 

(OEMs), operating conditions, facility environment, and 

maintenance records collectively lead to heterogeneous 

distribution for data collected from different machines. This 

will significantly limit the performance of conventional ML 

algorithms in PdM. Moreover, labeling data is generally 

costly and time-consuming. Finally, industrial processes 

incorporate complex conditions, and unpredictable 

breakdown modes lead to extreme complexities for PdM. In 

this study, similarity-based multi-source transfer learning 

(SiMuS-TL) approach is proposed for real-time classification 

of time series signals. A new domain, called "mixed domain," 

is established to model the hidden similarities among the 

multiple sources and the target. The proposed SiMuS-TL 

model mainly includes three key steps: 1) learning group-

based feature patterns, 2) developing group-based pre-trained 

models, and 3) weight transferring. The proposed SiMuS-TL 

model is validated by observing the state of the rotating 

machinery using a dataset collected on the Skill boss 

manufacturing system, publicly available standard bearing 

datasets, Case Western Reserve University (CWRU), and 

Paderborn University (PU) bearing datasets. The results of 

the performance comparison demonstrate that the proposed 

SiMuS-TL method outperformed conventional Support 

Vector Machine (SVM), Artificial Neural Network (ANN), 

and Transfer learning with neural networks (TLNN) without 

similarity-based transfer learning methods.  

1. INTRODUCTION 

The objective of this study is to develop an intelligent 

predictive maintenance (PdM) method for real-time 

classification of time series signals based on knowledge 

transfer from the states of multiple machines to the states of 
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an unknown operating machine. Machine failures become a 

more challenging problem to solve in various phases of 

maintenance. In terms of maintenance, how to utilize an 

effective maintenance technique is a more intensive focus in 

the past few years (De Felice, Petrillo, and Austorino, 2014; 

Selcuk, 2017; Jin, Weiss, Siegel, and Lee 2016). 

The state prediction of machinery is a significant problem. It 

provides the baseline information for fault detection, decision 

making, and PdM prior to the machine breakdowns (Xu, Liu, 

Jiang, Shen, and Huang, 2019). Recently, big data collected 

from the internet of things (IoT) motivates the research 

adopting innovative data-driven machine intelligence. 

Therefore, an intelligent state prediction model for operating 

machinery handling multiple machinery conditions can 

significantly advance PdM practices. As a result, the 

productivity and availability of machines can be increased, 

and the maintenance cost and downtime can also be reduced 

(Li & Zhang, 2020).  

Two types of modeling techniques have identified system 

failures/breakdowns: physics-based models and data-driven 

models. Data-driven techniques are the most attractive 

methodology in PdM applications because many such 

methods have been developed to leverage sensor data for 

machine state prediction. Broadly, data-driven 

state/condition monitoring methods associated with PdM 

consist of a specific combination of steps, beginning with 

data acquisition. In industrial-level applications, different 

types of data can be collected by placing sensors to monitor 

the state of the operating machines. Vibration, acoustic, 

current, and temperature are the most common sensor signals 

available to establish PdM models. After completing the data 

acquisition process, the obtained signals/data are pre-

processed (including de-noising and standardization) to 

extract critical process features. Then, machine learning 

(ML) techniques are utilized to build reliable models for fault 

recognition, fault classification, and maintenance related 

decision-making (Selcuk, 2017; Xu et al., 2019). With the 

development of artificial intelligence (AI) and ML practices 

such as deep learning (DL), researchers investigated how 

powerfully these techniques manifested in PdM (Li & Ma, 

2020; Li et al., 2020; Li, Wang, and He, 2016).  

In this study, "sources" are defined as the machines with 

sufficient data available for supervised modeling, which 

means that different states/conditions can be correctly 

identified from real-time signals. The "target" is the 

functioning machine not identical to the sources that is new 

to the ML model and for which we intend to identify the 

current state. Performance of the predictive models is highly 

dependent on the data distribution characteristics of the 

source and target ( Li et al., 2016). While most conventional 

ML algorithms assume the process data collected from the 

source and target follows the same probability distribution, in 

real-world applications, the source and target domains may 

follow different distributions, and the assumption may not 

hold. Plenty of studies were developed by leveraging labeled 

data available in both domains. However, collecting labeled 

data or labeling existing data is highly expensive, inefficient, 

and time-consuming. Few studies on unsupervised 

clustering-based fault diagnosis have been conducted 

(Zhang, Yu, Chang, and Wang, 2015; Guo, Lei, Xing, Yan, 

and Li, 2019). The researchers considered clustering the 

training set and target separately to identify the different fault 

types in subsets. Afterward, learning techniques were utilized 

to learn feature patterns in the subsets.  In one recently 

published study, Li and Zhang proposed a fault diagnosis 

method to address the partial domain adaptation problems 

using DL structures (Li & Zhang, 2020). In their method, they 

assumed that the label space of the target domain is a sub-

space of source label space. Multiple classification models 

and conditional data alignment schemes were used to obtain 

domain-invariant features for the healthy state data in source 

and target domains. Then, the prediction consistency 

schemes were utilized to perform the partial domain 

adaptation. In another study, same group of the 

corresponding authors (Li et al., (2020)) extended their 

previous work by introducing "representation clustering," 

adopting autoencoder structures to address data sparsity 

issues with insufficient labeled data. 

One of the promising techniques, called "transfer learning 

(TL)," which transfers pre-trained knowledge from the source 

to the target domain can resolve the problems mentioned 

earlier. The TL approach does not need to train predictive 

models from scratch, but it enables transferring the 

previously learned knowledge to initialize the target 

model(Pan & Yang, 2009). With TL-based advancement in 

condition monitoring, fault diagnosis, and status prediction, 

DL is a highly motivated research area in the last decade (Jin 

et al., 2016; Namuduri, Narayanan, Davuluru, Burton, and 

Bhansali, 2020; Niu, Liu, Wang, and Song, 2021).  

Despite that, industrial-level applications cooperate with 

multiple sources with unpredictable failure modes, which 

leads to high computational cost, high complexity, and extra 

complications to the predictive analysis in various aspects. 

Also, existing TL-based machine state predictions mainly 

focused on supervised learning (labeled data available in 

targets) with one single source and one single target (Niu, 

Liu, Wang, and Song, 2020). However, this is not always the 

case in real-life state prediction problems, as it is possible to 

observe various machines as multiple sources and multiple 

different conditions. The challenges identified in multi-

sources vs. one target problem are briefly summarized as 

follows: 

• The multiple distribution properties/feature 

characteristics are involved in the analysis. 

• Algorithms are highly complex and computationally 

intensive. 
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• Noisy data samples from various sensors may lead to 

performance deterioration in the predictive model. 

• The relationship between multiple sources and the 

target samples is unknown. 

• The current state of the target machine is unknown (No 

labels in the target). 

Moreover, almost all multi-source studies with one target 

problem reveal that recognizable failure modes can be 

identified by adopting clustering techniques (Liu, Zhou, Xu, 

Zheng, Peng, and Jiang, 2018; Afridi, Ross, and Shapiro, 

2016;  Liu, Li, and Ma, 2016). However, unknown failure 

modes can arise in industrial-level applications, and it is still 

a challenge to account for them in such analysis. 

This study aims to develop a powerful real-time operational 

state prediction method for the machinery using multiple 

sources by leveraging transfer learning and other statistical 

techniques (hierarchical clustering with Ward’s linkage 

classification across the similarity groups). The proposed 

method is an extension of the fundamental one source vs. one 

target problem. A new domain called “mixed domain” can be 

established to determine the similarity across sources and the 

target. The mixed domain is classified into group clusters. A 

feed-forward multi-layer perceptron (MLP) model is 

introduced to develop group-based classification models. In 

this study, these models are called pre-trained models. In this 

way, the generalization error can be reduced. We assume that 

the optimized trained parameters could correctly predict the 

unknown targets partially gathered into the same cluster 

(dispersed in each cluster). Hence, we store the learned 

parameters (trained weights) from individual pre-trained 

models. Finally, these learned parameters are transferred to 

form the final predictive model to predict the unlabeled 

target. To our best knowledge, this is the first study to utilize 

multiple sources and targets together to characterize the 

relationship between them. The performance of the proposed 

methodology is validated on the application of unknown state 

prediction of rotating machinery. A computer-controlled 

machine, "Skill boss manufacturing system (AMATROL 

Inc., n.d.)," designed to demonstrate modern major functions 

in manufacturing and production systems, has been used for 

data collection. In addition, publicly available bearing 

datasets, CWRU(Case Western Reserve University, n.d.)  

and PU (Kimotho et al., 2016) are used to validate the 

proposed method. All classifier models were evaluated by 

standard performance measures, sensitivity-specificity, and 

precision-recall. Also, to balance them in one performance 

metric, balanced accuracy and F-measure have been 

observed. The performances of states prediction on unknown 

targets by SiMuS-TL compared with existing ML techniques. 

Well-known classifier models, SVM and ANN without 

transfer, and transfer learning method TLNN (R. A. N. Zhang 

et al., 2017) are utilized to explore the unknown state 

prediction of the target domain given multi-sources (with the 

same conditions and features extracted from the vibration 

signals).  

The contribution of this work can be summarized as follows. 

• A new ANN-based transfer learning approach for the 

multi-sources with one target problem is developed in 

this paper. Labeled multi-sources and unlabeled targets 

data are used in constructing a new domain called mixed 

domain. Extracted features from both sources and the 

target are divided into appropriate groups based on 

similarities and dissimilarities attributed by the 

hierarchical agglomerative grouping technique. Then, 

independent pre-trained models are developed to learn 

the task-specific group features. The final model was 

developed by transferring pre-trained parameters. The 

final training sample is a weighted sample chosen as per 

the ratio concerning the target sample distribution.  

• This method guarantees less computational complexity 

on learning feature patterns as the pre-trained models 

were formed only on independent groups, which share 

the group-specific distribution characteristics. Here, we 

do not need any dense architectures to learn complicated 

feature patterns hidden in multiple sources and targets.  

• The final model ensured unlabeled target prediction 

collectively in a simple setting because group-specific 

feature characteristics have transferred to build the final 

model.  

• This method successfully addressed the difficulty of 

manipulating few or no labeled data in the target domain 

and various/mismatched distributions involved in the 

sources and the target (distribution discrepancy).   

• The similarity-based transfer learning via ANN 

architecture provides the value-added advantage of 

leveraging pre-trained knowledge to construct a 

predictive model on unknown targets and efficiently 

make decisions. 

The structure of this paper is organized in the following 

sections. A literature review and related studies in fault 

diagnosis, state prediction in rotating machinery, and PdM 

applications are introduced in Section 2. Methods and 

materials used in the proposed method, and learning 

architecture is discussed in Section 3. A case study based on 

applying the machine’s state prediction of an unknown target 

is described in detail in Section 4, and finally, conclusions are 

discussed in Section 5. 

2. LITERATURE REVIEW 

In this section, an overview of the past literature on transfer 

learning deep neural networks, fault detection or machine’s 
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state prediction techniques, and applications related to 

predictive maintenance are discussed. 

2.1. Fault diagnosis, state prediction and predictive 

maintenance (PdM)  

Condition-based maintenance or predictive maintenance 

problem has been investigated vastly over the last decade 

(Selcuk, 2017). Predictive maintenance and fault diagnosis 

are under the field of prognostic and health management. 

Recent development in advanced data collecting 

technologies, big data, IoT, and cyber-physical systems 

motivates the efficient PdM techniques. In this framework, 

signal data acquisition and storage, data pre-processing, 

feature extraction, diagnosis or prognosis, decision making 

are the significant steps (Xu et al., 2019). The primary goal 

of these practices are to identify the failures of machines or 

equipment by monitoring the current operating condition to 

schedule maintenance plans on operating machines. As a 

benefit, it can reduce the cost of downtime and unexpected 

maintenance for machine failures (Li et al., 2016). However, 

machine failures in industrial systems were common 

scenarios that caused more damage to its regular ongoing 

operations. In the literature, different types of fault diagnosis 

or state prediction methods were available. These methods 

can be categorized into model-based, data-driven, signal-

based, active fault-based, knowledge-based, and the 

combination of these methods. Combined methods were 

known as hybrid fault diagnosis methods, but data-driven 

methods were the most dominant methods. All these methods 

have been employed in various industrial PdM applications 

(Li et al., 2020; Li et al., 2016).  

Data acquisition from several sensors involved maintenance 

problems known as multivariate time series data. Also, a 

higher number of independent variables consist in collected 

data referred to as high dimensional data. The procedures 

carried out before the analysis is called “pre-processing” 

collected data. Pre-processing the recorded signals involves 

several steps known as denoising and dimensionality 

reduction(Namuduri et al., 2020). Frequently used 

dimensionality reduction methods are principal component 

analysis (PCA), linear discriminant analysis (LDA), and 

quadratic discriminant analysis (QDA). Filtering the signal, 

statistical approaches, and transform domain (wavelet 

transform (WT), contourlet transform (CT)) are the available 

denoising methods (Mohan et al., 2014). Also, fast Fourier 

transform (FFT) and empirical mode decompositions (EMD) 

are other feature extraction methods available for data pre-

processing (Flandrin et al., 2004). The next step was 

diagnosis and prognostics. Fault diagnosis supporting 

supervised ML was the famous technique that determines the 

target domain samples by learning the training examples. In 

this learning technique, the labeled samples are available. 

Famous supervised machine learning methods are SVM) 

naive Bayes (NB), logistic regression (LR) and ANN. 

Nevertheless, unsupervised approaches do not have labeled 

samples to learn, but it identifies the features hidden in the 

data structure. Self-organizing map (SOM), hierarchical 

clustering (HC), k-means, and dimensionality reduction are 

examples of unsupervised ML(Vakharia, Gupta, and Kankar, 

2015a). 

2.1.1. Deep learning (DL) and fault diagnosis  

DL-based fault diagnoses are elaborated recently in the 

automotive industry, machine monitoring, environmental 

monitoring, and medical health applications. Different DL 

architectures have proven the ability of automatic feature 

extraction and deep feature learning in PdM. Autoencoders 

(AE), stacked autoencoders (SAE), convolutional neural 

networks (CNN), ANN, deep belief networks (DBN), and 

recurrent neural networks (RNN) are the recent 

advancements prevalent in literature (Gao et al., 2015; 

Vakharia, Gupta, and Kankar, 2015b). 

Samanta and Al-Balushi (2003) presented ANN based fault 

diagnosis for rolling element bearings. Defective and normal 

time-dependent vibration signals of bearing were used in 

their analysis. Statistical features, such as root mean square 

(RMS), variance, kurtosis, and skewness, were used as input 

features to the ANN structure. The response variable was a 

binary variable that indicates the status of the bearing, i.e., 

normal or defective. Furthermore, multiple pre-processing 

steps, such as filtering the raw signals as high-pass and band-

pass, WT, and envelope detection, were utilized in this 

analysis. Mao, He, Li, and Yan (2016) proposed another fault 

diagnosis method for the bearing faults by concerning a 

couple of drawbacks identified in machine learning 

techniques, SVM and ANNs, under extensive data analysis. 

Extreme learning machines (ELM) and auto encoder-based 

diagnosis approaches are introduced to overcome these 

weaknesses. The comparison study carried out with some 

state of art fault state prediction methods on rolling element 

bearing data shows that the proposed method is 

outperformed. Jia, Lei, Lin, Zhou, and Lu (2016) proposed a 

new intelligent diagnosis method for fault diagnosis in 

rotating machinery. Deep neural network-based fault feature 

extraction and intelligent diagnosis procedure have been 

investigated in their experimental study.  Xia, Li, Xu, Liu, 

and Silva (2018) presented a method to reach more accurate 

diagnosis results by considering temporal and spatial 

information of training data collected from multiple sensors. 

CNN structure trained with these features employed in the 

application of fault diagnosis for rotating machinery. Liu et 

al., (2016) proposed another approach for fault diagnosis in 

rolling element bearing using sound signals. In their 

technique, they combine the short-time Fourier transform 

(STFT) and stacked sparse autoencoder (SSA). First, apply 

the STFT on sound signals and obtained spectrograms. Then 

utilize SSA to extract the fault features. Finally, softmax 

regression is introduced to classify the fault states. 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

5 

Tran, Althobiani, and Ball (2014) introduced an advanced 

approach for PdM application, fault identification in valves 

located at reciprocating compressors adopting a DBN. In 

their analysis, three different measures in compressor valves, 

such as current, pressure, and vibration signals, were 

employed. Additionally, Teager–Kaiser energy operation 

(TKEO) distinguishes the fault patterns of three different 

signals. WT has been used for denoising the current and 

pressure signals. Another DL-based fault diagnosis method 

has been proposed, introducing a novel hierarchical diagnosis 

network (HDN) by Gan, Wang, and Zhu  (2016). Hierarchical 

identification has been constructed by collecting the layers of 

DBNs for the mechanical systems. In their approach, two-

layer HDN has been considered. In the first layer, fault type 

is identified, and then the ranking process is utilized to 

identify the severity of the faults. The performance of the 

proposed method was examined in a comparison study by 

constructing similar networks employing neural networks 

along with the backpropagation technique and SVM. Lu, 

Wang, Qin, and Ma (2017) examined the properties of 

stacked denoising autoencoder (SDA). He suggested that it 

was a reliable method for health state identification of raw 

signals, which contain ambient noise and fluctuations, 

generates in an operating condition. Xia, Li, Liu, Xu, and De 

Silva (2017) proposed an intelligent fault diagnosis method 

in another application using deep neural networks (DNN) and 

SDA. According to their invention, features of the signal 

learned by using a denoising autoencoder in an unsupervised 

mode. Then it used a DNN structure to train with few items 

of labeled data. The accurate results were reached by 

introducing fine-tuning in fault classification. 

2.2. Transfer learning (TL) based fault diagnosis (FD) 

and predictive maintenance (PdM). 

A fundamental assumption in traditional ML algorithms is 

that the training and testing data samples follow the same 

probability distribution or share the same feature space 

characteristics while learning and predicting processes. 

However, in practical implementations, many problems fail 

to hold this assumption. Once the distributions change in 

training and testing data, the performance of the predicting 

model degrades. In transfer learning methodology, learned 

knowledge is transferred from one task to another by 

developing the second task's learning processes' fulfillment. 

Also, the first and second tasks can be different, but they 

should be related. TL has become one of the powerful ML 

techniques involved in many research studies over the past 

decade (Perschl & Schmidt, 1993; Tsiakmaki, Kostopoulos, 

Kotsiantis and Ragos, 2020; Lu et al., 2017; Xia et al., 2017). 

Figure 1 shows the significant difference between 

traditional ML and TL. The TL approach was first 

introduced in 1995. However, it was discovered in different 

names, lifelong learning, knowledge transfer, inductive or 

transductive transfer (Thrun & Pratt, 1998). In 1997, an 

exciting exploration introduced termed "multi-task 

learning" (Thrun, 1997). It learns multiple tasks, discovers 

the sources' latent characteristics, and employs them in 

another related task. Later, TL-based real-world 

applications show superior performances over the 

traditional approaches. Furthermore, traditional ML 

approaches such as neural networks, LR, SVM, and 

decision tree supported transferring scenarios in regression 

and classification problems become more realistic than 

improving independently (Zhu, 2008; Thrun et al.,1998; 

Thrun, 1997; Zhang, Hu, and Fang, 2010). Eventually, 

researchers studied the practice of TL in 

deep/convolutional neural networks for complex 

applications (De Felice et al., 2014; Paul, Rottensteiner, and 

Heipke, 2015; Shen, Chen, Yan, and Gao, 2016; Gideon, 

Khorram, Aldeneh, Dimitriadis, and Provost, 2017). 

 

Figure 1: Different Learning Processes (A) Traditional 

machine learning (B) Transfer learning 

Recently, transfer learning-based deep learning algorithms 

have been extensively used in fault diagnosis and PdM 

applications. TL-based DNN is one of the leading deep 

learning algorithms broadly adapted in FD and PdM. 

(Zhang et al., 2015) proposed a novel framework using TL 

and DNN to match source and target distributions 

differences and suggested deep transfer networks (DTN). 

In particular, two layers in the DNN structure work as 

feature extraction and discrimination layers to match the 

source and target distributions. Further, the complexity 

behind the DTN process declares a linear relationship with 

the number of training samples through empirical 

observations. (Xu et al., 2019) presented a new perspective, 

including TL to digital twin-assisted fault diagnosis. First, 

a diagnosis model was trained using DNNs in virtual space. 

Then, the diagnosis model, trained in virtual space, was 

migrated to physical space using TL. The performance of 

their proposed method was evaluated based on the car 

body-side production line application. (Shao, Member, 

Mcaleer, and Yan, 2018) introduced an FD method using 

DNNs and TL. It recommended that introducing a TL 

strategy to DNNs expedite the training process and model 

performances. According to their method, WT was used to 

convert the sensor data to images. The technique was called 

time-frequency imaging, and it tends to transform signal 

frequency time-series into the time-frequency distribution. 

Next, using pre-trained networks, low-level features were 

extracted. Then all model networks were fine-tuned 

through the labeled time-frequency images. The observed 

results from the three different experiments show that the 

test accuracies are approximately 100%. Also, researchers 
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investigated the effectiveness of the popular pre-trained 

model's in FD applications (Xu et al., 2019; Sun, Ma, Zhao, 

Tian, and Yan, 2019; Shao et al., 2018). 

2.3. Discussion of current research limitations 

 

There exist weaknesses of currently available intelligent fault 

diagnosis methods incorporated with DL architectures. They 

analyze the problem at hand in the direction of modeling 

historical sensor data with deep architectures. Thus, training 

DL models is still very time-consuming and tends to be 

sensitive to historical data. As a consequence of the 

sensitivity, generalization of the trained model leads to 

complications(Macklin, 2019). In addition, fault diagnosis in 

complex systems may lead to significant difficulties while 

developing predictive models in real time (Tzafestas & 

Dalianis, 1994). Another aspect of limitations observed in 

currently available fault diagnosis methods and condition-

based monitoring employing physical models for decision 

making (Chen, 2012; S. Lu et al., 2017). However, it may not 

be beneficial for complex systems because establishing 

explicit physical models for decision-making is extremely 

difficult and time-consuming (G. Xu et al., 2019). Therefore, 

developing data-driven methods to eliminate the complex 

training is adequate.  

Transferring learned knowledge from the previously studied 

problem might accelerate training and improve the model's 

predictive performance. The DL-based TL approaches are 

widely acknowledged in fault diagnosis/prediction and 

conditioned-based monitoring, among other applications. 

The majority of them addressed the labeled target domains, 

while unlabeled targets, or few numbers of labeled samples, 

were rarely investigated. In addition, the research efforts are 

usually focused on solving single-source transfer learning 

with one target. However, an integrated study to reveal the 

hidden relationships of target and source data, combining 

multiple sources and targets, has not been examined broadly 

in these studies.  

It is essential to consider the distribution characteristics 

between sources and the target concurrently to describe their 

hidden relationships to develop a predictive model for the 

unknown target. Therefore, this study introduces a novel 

time-series classification method for rarely labeled targets 

using similarity-based knowledge transfer for unknown state 

prediction in multi-source problems.  

3. METHODOLOGY 

In this section, theoretical details of the proposed SiMuS-TL 

method are discussed in detail.  

3.1. Mathematical notation and intention 

A set of multiple sources (multiple machine’s conditions 

monitored previously) are denoted as 𝑆 = {𝑆1, 𝑆2, 𝑆3, … , 𝑆𝑛}, 

and the target (An operating machine, with its state unknown) 

is denoted as 𝑇. 

 

Notation Description 

𝒱 Vibration signal/time series space 

𝑉(.) Vibration signal 

𝑉𝑛𝑆𝑖

𝑆𝑖  Vibration signal from 𝑖𝑡ℎ  source domain 

where 𝑛𝑆𝑖
 number of vibration signals are 

available  

𝑉𝑛𝑡
𝑇  Vibration signals from the target domain 

where 𝑛𝑇  number of vibration signals are 

available 

𝒟𝑆𝑖
 The 𝑖𝑡ℎ source domain, 𝑖 = 1,2,3, … , 𝑛   

𝒟𝑇 The target domain 

𝒟𝑚𝑖𝑥  A new domain called “mixed domain” which 

is built with weighted samples from multi-

sources and the target.  

𝒟𝐺𝑚
 The 𝑚𝑡ℎ identity group domain, 𝑚 =

1,2,3, … , 𝑘   

𝐷𝑆𝑖
 The 𝑖𝑡ℎ source domain data 

𝐷𝑇  The target domain data 

𝐷𝑚𝑖𝑥 A new domain data 

𝐷𝐺𝑚
 The 𝑚𝑡ℎ identity group domain data,  𝑚 =

1,2,3, … , 𝑘   

𝑃𝑆𝑖
(V) The marginal probability distribution of the 

𝑖𝑡ℎ source 

𝑃𝑇(V) The marginal probability distribution of the 

target 

𝑃𝑚𝑖𝑥(V) The marginal probability distribution of the 

𝐷𝑚𝑖𝑥 

𝑃𝐺𝑚
(X) The marginal probability distribution of the 

𝑚𝑡ℎidentity group,  𝑚 = 1,2,3, … , 𝑘   

𝑃𝐺𝑚
∗ (X) The marginal probability distribution of the 

𝑚𝑡ℎ identity group, satisfying the condition 

𝑃𝑇
𝐺𝑚

∗

> 0, 𝑚 = 1,2, … , 𝑘∗ 

𝒴 A label space of vibration signals multiple 

sources and the target 

Table 1. List of notations 
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𝑦𝑆𝑖

𝑐  Multiple states of machines which belongs to 

the 𝑖𝑡ℎ  source,  
𝑦𝑆𝑖

𝑐 = {𝑐 ∈ ℝ} ∈ 𝒴, there exist c machine states  

𝑦𝑇
𝑐  Multiple states of machines which belongs to 

the target  
𝑦𝑇

𝑐 = {𝑐 ∈ ℝ} ∈ 𝒴, there exist c machine states  

𝑦𝐺𝑚
∗

𝑐  Multiple states of machines which belongs to 

the  𝑚𝑡ℎ  identity group, 𝑦𝐺𝑚
∗

𝑐 = {𝑐 ∈ ℝ} ∈ 𝒴 , 

there exist c machine states,  𝑚 = 1,2,3, … , 𝑘∗   

𝒳 A feature space of vibration signals 

𝑋𝑆𝑖
 Features extracted from 𝑖𝑡ℎ  source,  𝑖 =

1,2,3, … , 𝑛   

𝑋𝑇 Features extracted from target 

𝐺𝑚 The 𝑚𝑡ℎ group found in 𝐷𝑚𝑖𝑥 , 𝑚 = 1,2,3, … , 𝑘 

𝐺𝑚
∗  The 𝑚𝑡ℎ  identity group found in 𝐷𝑚𝑖𝑥 

satisfying the condition 𝑃𝑇
𝐺𝑚

∗

> 0, 𝑚 =
1,2, … , 𝑘∗  

𝒯𝑇 Target domain task 

𝒯𝑚𝑖𝑥 Mixed domain task 

𝒯𝐺𝑚
∗  Identity group domain task 

𝐹𝑠(. ) A function 𝐹𝑠  mapping data samples of 𝐷𝑆𝑖
 to 

𝐷𝑚𝑖𝑥  

𝐹𝑐(. ) A function 𝐹𝑐 mapping data samples of 𝐷𝑚𝑖𝑥 to 

𝐺𝑚 

𝐹𝑇(. ) A function 𝐹𝑇  mapping data samples of 𝐺𝑚
∗  to 

𝐷𝑇
∗  

𝑃𝐺𝑚
 Domain sharing percentage of the 𝑚𝑡ℎ group in 

𝐷𝑚𝑖𝑥, 𝑚 = 1,2,3, … , 𝑘 

𝑃𝑇
𝐺𝑚

∗

 Target sample distribution of the 𝑚𝑡ℎ  identity 

group, 𝑚 = 1,2,3, … , 𝑘∗ 

𝑋
(.)

𝐺(.)
 Group-based vibration signal features 

𝐴𝑁𝑁𝐺𝑚
∗  Group-based 𝑚𝑡ℎ  ANN model,  𝑚 =

1,2, … , 𝑘∗ 

𝑊𝑚
(𝑙)

 Group-based optimized/trained 

weights/parameters of 𝑚𝑡ℎ model related to 𝑙𝑡ℎ 

layer,  𝑚 = 1,2, … , 𝑘∗  

𝐷𝑇
∗  Group-based vibration  features data selected 

for final training set based on target sample 

distribution 

Table 1. List of notations (Continued 1) 

 

𝑤𝑠𝑖
 A mixing weight defines for the specific source  

𝑤𝑇  A mixing weight defines for the target domain 

𝑝 Number of vibration features (i.e., principal 

components) extracted 

n The total number of multiple sources available   

N Total number of vibration signal data in 𝐷𝑚𝑖𝑥  

i The index variable for multiple sources 

m The index variable for identity groups found in 

𝐷𝑚𝑖𝑥 

𝑗 The index variable for sample data in 𝐷𝑚𝑖𝑥 

𝑛𝑆𝑖
 The number of vibration signals belongs to 

𝑖𝑡ℎ source 

𝑛𝑡 The number of vibration signals belongs to 

target 

𝑘 The number of identity groups found in 𝐷𝑚𝑖𝑥 

𝑘∗ The number of identity groups satisfying the 

condition 𝑃𝑇
𝐺𝑚

∗

> 0 

Table 1. List of notations (Continued 2) 

 

In this paper, a space of vibration waveform signal/time-

series denoted as 𝒱 , calculated features from vibration 

signals space denoted as 𝒳, and the shared label space for 

source and target is 𝒴. In fault diagnosis problems, distinct 

fault types have characteristic vibrational features, and 

extracting feature parameters from raw vibration data for 

fault/state classification is crucial. We considered that 

extracted features from time series data could classify 

different fault/state types in operating machinery. Therefore, 

we selected the time and frequency domain features in 

vibration signals to demonstrate the proposed method's 

effectiveness in rotating machinery. If we are supposed to 

extend this methodology with multiple faults/state problems, 

we might employ wavelet (WT) analysis (Donoho, 1995) 

methods for noise removal to isolate multiple fault features.   

The labels of the vibration signals (𝑦𝑆𝑖

𝑐 , 𝑦𝑇
𝑐 ), and multiple 

states of machines which belongs to the source or target 

𝑦(.)
𝑐 = {𝑐 ∈ ℝ} ∈ 𝒴 , there exist c machine states. The 

marginal probability distribution of the 𝑖𝑡ℎ source is denoted 

as 𝑃𝑆𝑖
(V), where time-stamp waveform signal 𝑉 =

{𝑉1, 𝑉2, … , 𝑉𝑛} ∈ 𝒱. There are n source domains (where the 

state and the machines relationship studied) available and 

denoted as 𝒟𝑆𝑖
, where 𝑖 = 1,2, . . 𝑛 . In this study, we 

considered that one target domain 𝒟𝑇  is available. The 

specific domain, sources and target can be defined as 𝒟𝑠𝑖
=

{𝒱, 𝑃𝑆𝑖
(𝑉)}  and 𝒟𝑇 = {𝒱, 𝑃𝑇(𝑉)}  respectively. The source 

domain data are denoted as 𝐷𝑠𝑖
=
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{(𝑉1
𝑆1 , 𝑦1

𝑐𝑆𝑖 ) , … , (𝑉𝑛𝑆𝑖

𝑆𝑖 , 𝑦𝑛𝑆𝑖

𝑐𝑆𝑖 )}  and target domain data are 

denoted as 𝐷𝑇 = (𝑉1
𝑇 , 𝑉2

𝑇 , … , 𝑉𝑛𝑡
𝑇). 

3.2. Assumptions 

• Extracted features from time-dependent vibration signals 

belong to target and multi-sources can be grouped into 

groups (𝐺1, 𝐺2, … , 𝐺𝑘 ) based on similarities identified 

using a hierarchical agglomerative clustering technique.  

• The label space of the multiple sources and the target 

domain are same, denoted as 𝒴.  

• Features extracted from vibration signals of the target 

machine in identity groups follow the same probability 

distribution as the features from source machines 

vibration signals samples. 

• A set of parameters (𝑊𝑚
(𝑙)

∶  𝑙 = 1,2,3 … , 𝑚 =

1,2,3, … 𝑘∗)  obtained from generalized group-based 

models hold the potential of correctly predicting the 

partially distributed target’s labels. Because, they follow 

the same group-dependent feature characteristics with 

source (𝐷𝐺𝑚
∗ = (𝑋1

𝑆(.) , 𝑋2

𝑆(.) , … , 𝑋(.)
𝑇 , . . . , 𝑋𝑛𝑔𝑚

𝑆(.) ). 

3.3. Outline of the algorithm of similarity-based multi-

source transfer learning   

The SiMuS-TL method includes a sequence of clustering, 

classification, and transfer learning processes.  The workflow 

diagram of the proposed method is shown in Figure 2. 

Figure 2. The workflow diagram of the proposed method. Sequence of process, raw vibration data, feature extraction, mixed 

domain clustering, pre-trained models and final model 

Step 1. Mix the source and the target samples. 

This step aims to form a new domain to define the similarities 

that the target shares with the multi-sources. The multi-

sources and target vibration signals or time-dependent raw 

vibration signals are used to establish the “mixed domain.” 

We compute multiple features to represent the vibration 

signals in this new domain to identify similarities between 

target and multi-sources. The waveform signals of sources 

and the target are considered the input of this step and the 

features extracted are the output of this step.  

Step 2. Find the identity groups. 

The objective of this step is to identify the identity groups that 

follow the condition 𝑃𝑇
𝐺𝑚

∗

> 0 for further analysi𝑠.  Based on 

the features extracted in Step 1, similarities are identified 

within multiple sources, and the target is distributed to 

independent groups using a hierarchical agglomerative 

clustering technique. We have chosen the hierarchical 

clustering with ward's linkage method. These identified 

groups are called "identity groups" and are denoted as 
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𝐺1, 𝐺2, … , 𝐺𝑘 . These groups consist of unique group 

characteristics, and 𝑘 number of groups found in 𝐷𝑚𝑖𝑥.   Let 

us identify groups that contain the target samples, denoted 

as 𝐺𝑚
∗  where 𝑃𝑇

𝐺𝑚
∗

> 0. If there are no target samples (𝑃𝑇
𝐺𝑚

∗

=

0) in 𝐺𝑚 , the 𝑚𝑡ℎ  group is not considered in the current 

analysis.    

Step 3. Train group-based models 

This step aims to find the layer-wise 𝑊𝑚
(𝑙)

 for each identity 

group. Given the identity groups with 𝑃𝑇
𝐺𝑚

∗

> 0, suppose that 

we have found 𝑘∗  groups result in 𝑃𝑇
𝐺𝑚

∗

> 0,  and denoted 

them as 𝐺1
∗, 𝐺2

∗, 𝐺3
∗ … 𝐺𝑘∗

∗ , where 𝑘∗ ≤ 𝑘. We train 𝑘∗  ANN 

models (𝐴𝑁𝑁𝐺1
∗ , 𝐴𝑁𝑁𝐺2

∗, … , 𝐴𝑁𝑁𝐺𝑘∗
∗ ) using source samples 

in the respective identity groups. These models are called pre-

trained ANNs in this method. We expected to find the 

optimum parameters of each pre-trained ANN models. Let us 

define the optimal parameters/weights for the layers in the 

𝑚𝑡ℎ  pre-trained ANN as 𝑊𝑚
(𝑙)

∶  𝑙 = 1,2,3 … , 𝑚 =
1,2,3, … 𝑘∗, where 𝑙 denotes the layer number in the 𝑚𝑡ℎ pre-

trained models.  

Step 4. Transfer the learned information 

The parameters obtained from pre-trained models (𝑊𝑚
(𝑙)

) are 

transferred to the final model, and this process is called 

"transplanting layers." It copies the layer-wise weights from 

the pre-trained models to the final ANN model. In addition, 

randomly initialized connecting layers have been used to 

compile the copied layers in the final model. The final model 

training is subjected to weighted samples chosen from groups 

as per the 𝑃𝑇
𝐺𝑚

∗

.  We dropped the input and output layers of 

pre-trained models. Transplanted weights are frozen in the 

final model; otherwise, we lose the benefits of transferring 

pre-trained knowledge in the final model. The input of this 

step is the parameters/weights transferred to the final model 

and preparing the final training set. The output will be the 

generalized model to predict the complete set of target labels. 

The output of this ANN model prediction is the target 

machinery's states prediction in operation. 

3.4. Detailed SiMuS-TL method 

The problem of finding the state of the operating machine in 

the target domain is an unsupervised learning problem. The 

partially shared similarity measures of the target can be 

characterized by the formation of the 𝐷𝑚𝑖𝑥, where the labels 

are irrelevant. 

3.4.1. Step 1. Mix the source and target samples 

The target and multi-sources are used to create the mixed 

domain 𝐷𝑚𝑖𝑥 . The mixing weights are calculated based on the 

available sample size of the target and sources. Suppose that 

you have two sources and one target. The number of time-

dependent vibration signals found in the target is denoted as 

𝑛𝑡 , and sources 1 and 2 consist of 𝑛1  and 𝑛2  samples, 

respectively. The weighting coefficients for target, sources 1 

and 2 are represented as 𝑤𝑇 , 𝑤𝑠1
, 𝑤𝑠2

, respectively. 

𝑤𝑠1
=

𝑛1

𝑛𝑡
, 𝑤𝑠2

=
𝑛2

𝑛𝑡
, 𝑤𝑇 =

𝑛𝑡

𝑛𝑡
= 1                     (1) 

One can down/up sample the sources as per the target to 

include all samples from the target domain. We define a new 

domain called “mixed domain (𝒟𝑚𝑖𝑥)” as in the Equation (2). 

𝒟𝑚𝑖𝑥 = {𝒱, 𝑃𝑚𝑖𝑥(𝑉)}        (2) 

𝑃𝑚𝑖𝑥(𝑉) denotes the marginal probability distribution, where 

𝑉 = {𝑉
(.)

𝑆(.) , … , 𝑉(.)
𝑇 , … 𝑉(𝑁)

(.)
} ∈ 𝒱. The data samples belong to 

the 𝒟𝑚𝑖𝑥  are denoted as 𝐷𝑚𝑖𝑥 .  

            𝐷𝑚𝑖𝑥 = {⋃ 𝐹𝑠(𝐷𝑆𝑖
, 𝑤𝑆𝑖

) ⋃ 𝐷𝑇
𝑛
𝑖=1 }        (3) 

A sampling function 𝐹𝑠 is defined for establishing 𝐷𝑚𝑖𝑥 using 

the weight 𝑤𝑆𝑖
 for each specific domain 𝐷𝑆𝑖

. In this study, 

time-domain features and frequency domain features are 

extracted. Principal component analysis (PCA) is used for 

dimension reduction. It calculates the scores to obtain the 

variance by mapping original data onto spaces spanned by the 

eigenvectors, linking to the sample covariance matrix without 

losing major information (Jackson, 1991). The established 

mixed domain is used to find identity groups using the 

features and similarity grouping technique discovered by 

unsupervised clustering where the labels are irrelevant. How 

to set the similarity grouping will be further discussed in 

section 3.4.2. 

3.4.2. Step 2. Find the identity groups 

Identity groups are characterized using a hierarchical 

agglomerative approach (Szmrecsanyi, 2009). It determines 

which set of instances are similar to each other within sets of 

elements. A proper distance measure of connecting pairs of 

observations and a linkage process that explains the variation 

of sets based on the pairwise length in the sets is required. 

The selection of a relevant measure may affect the similarity 

groups. We investigated hierarchical clustering with multiple 

distance metrics and with different linkage methods. The 

planned distance measures and linkage method are shown 

below. Suppose that two data points are denoted as a and b. 

The distance between the 𝒏 -dimensional vector a and b is 

indicated as d, and different similarity distance metrics 

(Shirkhorshidi et al., 2015) are summarized in Table 2. 
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Distance metric 

 

Formula 

 

 

Euclidean distance  

(Most frequently used distance metric in statistical studies) 

 

 

Squared Euclidean distance 

𝑑(𝑎, 𝑏) = √∑(𝑎𝑖 − 𝑏𝑖)
2

𝑛

𝑖=1

 

 

𝑑(𝑎, 𝑏) = ∑(𝑎𝑖 − 𝑏𝑖)
2

𝑛

𝑖=1

 

 

 

Manhattan distance  

(A grid path distance between two points) 

 

𝑑(𝑎, 𝑏) = ∑ |𝑎𝑖 − 𝑏𝑖|

𝑛

𝑖=1

 

 

 

Chebyshev Distance  

(Along any coordinate dimension the greatest difference) 

 

𝑑(𝑎, 𝑏) = 𝑚𝑎𝑥𝑖|𝑎𝑖 − 𝑏𝑖| 
 

 

Canberra Distance  

(Weighted version of Manhattan distance) 

 

𝑑(𝑎, 𝑏) = ∑
|𝑎𝑖 − 𝑏𝑖|

|𝑎𝑖| + |𝑏𝑖|

𝑛

𝑖=1

 

 

Table 2.  Distance metrics and formula

(1) Single linkage: The individual entities form the groups by 

merging the nearest neighbors, related to each other by the 

smallest distance or most significant similarity. Find the 

smallest distance between groups and merge the two group 

objects. Let 𝐺1  and 𝐺2  form a group, the distances update 

formula 𝑑(𝐺1 ∪ 𝐺2, 𝐺3), between (𝐺1𝐺2) and another group 

𝐺3 can be computed by Equation (4). 

𝑑(𝐺1 ∪ 𝐺2, 𝐺3)   =  𝑚𝑖𝑛{𝑑(𝐺1, 𝐺3), 𝑑(𝐺2, 𝐺3) }                (4) 

(2) Complete linkage – Complete linkage has similar criteria 

as a single linkage, but it finds the distance between groups 

based on two elements that are most separated. For example, 

after the general initialization, merging the corresponding 

two groups. Let 𝐺1 and 𝐺2 form a group, the distances update 

formula 𝑑(𝐺1 ∪ 𝐺2, 𝐺3), between (𝐺1𝐺2) and another group 

𝐺3 can be computed by Equation (5). 

𝑑(𝐺1 ∪ 𝐺2, 𝐺3)   =  𝑚𝑎𝑥{𝑑(𝐺1, 𝐺3), 𝑑(𝐺2, 𝐺3) }       (5) 

(3) Average linkage – Average linkage finds the distance 

between two groups as the average distance between all pairs 

of elements where one pair belongs to each group. For 

example, after the general initializing step of selecting 

criteria, let 𝐺1  and 𝐺2  form a group, the distances update 

formula 𝑑(𝐺1 ∪ 𝐺2, 𝐺3), between (𝐺1𝐺2) and another group 

𝐺3 can be computed by Equation (6), where 𝑛𝑔1
, 𝑛𝑔2

, and 𝑛𝑔3
 

are the total number of elements in different groups in the 

mixed domain. 

   d(G1 ∪ G2, G3)   =  
ng1d(G1,G3)+ng2d(G2,G3)

ng1+ng2

         (6) 

(4) Ward’s linkage – This is also known as the minimum 

variance method (Murtagh & Legendre, 2014; Szmrecsanyi, 

2009). Initially, all elements in the space considered as a 

single object cluster. Then, the ward’s method forms a cluster 

based on minimizing the total variance within pair of clusters. 

In other words, two groups are merged in finding the smallest 

increase calculated by the sum of squared error (SSE). Then, 

the distances update formula can be computed by Equation 7. 

 

𝑑(G1 ∪ G2, G3) = √
(ng1+ng3)d(G1,G3)+(ng2+ng3)d(G2,G3)−ng3d(G1,G2)

ng1+ng2+ng3

              (7) 

Similarities are identified within sources, and the target is 

separated into independent groups using a hierarchical 

agglomerative technique. We have chosen the most 

frequently used distance metric in statistical studies, 

"Euclidean distance," with ward's linkage method in the 

proposed method. However, we tested with all these distance 

metrics measures and linkage methods in our experiments.  
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The group-based domains can be defined and denoted 

as  𝒟𝐺𝑚
 as in Equation (8). 

 𝒟𝐺𝑚
= {𝒳, 𝑃𝐺𝑚

(𝒳)},         (8) 

where 𝑚 = 1,2,3 … , 𝑘. Suppose that the 𝑚𝑡ℎ  group data is 

denoted as 𝐷𝐺𝑚
 which consists of both source and target data. 

          𝐷𝐺𝑚
= (𝑋1

𝑆(.) , 𝑋2

𝑆(.) , … , 𝑋(.)
𝑇 , . . . , 𝑋𝑛𝑔𝑚

𝑆(.) ),        (9) 

where, 𝑋
(.)

𝑆(.)
 denotes the mixed domain source samples and 

𝑋(.)
𝑇  denotes the target samples. We determine a correlation-

based similarity ratio or a group-based measure called “target 

sample distribution (𝑃𝑇
𝐺𝑚

∗

 )” across groups, calculate as in 

Equation (10). 

𝑃𝑇
𝐺𝑚

∗

=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑚𝑡ℎ𝑔𝑟𝑜𝑢𝑝

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡
%      (10) 

The method of obtaining the targets in each group is 

fundamentally based on general searching criteria. First, set 

an index variable 𝑗 for sources and targets (𝑗 = 1,2,3. . 𝑁). 

This process is called "indexing." Next, explore the particular 

index variable in a specific group (Looping in every group 

and obtaining the target indexes). This way allows us to get 

the number of targets and source samples in a particular 

group. After we obtained the number of targets in each group, 

we can calculate 𝑃𝑇
𝐺𝑚

∗

. The ratio 𝑃𝑇
𝐺𝑚

∗

, where  0 < 𝑃𝑇
𝐺𝑚

∗

 < 1 for 

𝑚 = 1,2, … , 𝑘∗.  Suppose that we found groups with 𝑃𝑇
𝐺𝑚

∗

>
0 , which are denoted as  𝐺1

∗, 𝐺2
∗, 𝐺3

∗ … 𝐺𝑘∗
∗  where 𝑘∗ ≤

𝑘. If 𝑘∗ < 𝑘 the groups (𝑘 − 𝑘∗) may end up with 𝑃𝑇
𝐺𝑚

∗

= 0, 

and they are excluded in the analysis. 

3.4.3. Step 3. Training group-based models 

Target samples in 𝐺𝑚
∗ , may follow similar distribution 

characteristics and features identical to the group 𝐺𝑚
∗ . The 

hidden differences between source and target domain 

samples are adjusted in this process as we group targets as 

they are gathered into identity groups with multi-source 

samples. Therefore, supervised ML models can be built on 

groups ( 𝐺1
∗, 𝐺2

∗, 𝐺3
∗ … 𝐺𝑘∗

∗ ) to predict the target domain 

partially. However, our objective is not to build a model to 

make partial predictions on the target but to predict the 

complete target domain in one setting. We train 𝑘∗  group-

based pre-trained ANN models 

(𝐴𝑁𝑁𝐺1
∗, 𝐴𝑁𝑁𝐺2

∗ , … , 𝐴𝑁𝑁𝐺𝑘∗
∗ ), using the group features from 

sources with labels across groups. ANN models consist of 

multiple layers, such as input, hidden layers, and fully 

connected dense layers. Let us define the layer-wise learned 

parameters/weights in 𝐴𝑁𝑁𝐺𝑚
∗  as 𝑊𝑚

(𝑙)
∶  𝑙 = 1,2,3 … , 𝑚 =

1,2,3, … , 𝑘∗, where 𝑙 denotes the layer number of 𝐴𝑁𝑁𝐺𝑚
∗ . 

The identity group’s domain task can be defined as 𝒯𝐺𝑚
∗  . 

              𝒯𝐺𝑚
∗ = {𝑦𝐺𝑚

∗
𝑐 ∈ 𝒴, 𝐴𝑁𝑁𝐺𝑚

∗ }       (11) 

It consists of two responses of interest, (𝑦𝐺𝑚
∗

𝑐 , 𝑐 ∈ ℝ) and a 

group-based objective function (𝐴𝑁𝑁𝐺𝑚
∗ ). The cross-entropy 

loss will be combined with the softmax activation for 

binary/multi-class classification problems. The 

backpropagation and stochastic gradient descent (SGD) 

algorithms examine to find the optimum layer-wise weight 

matrices. Furthermore, if 𝑐 > 2 , this is the cost function 

becomes the categorical cross-entropy (CE), as shown in 

Equation (12).  

          𝐶𝐸 =  − ∑ 𝑦𝑖 𝑙𝑜𝑔(𝑓(𝑥𝑖))𝑐
𝑖=1       (12) 

where the 𝐶𝐸 loss with softmax activation 𝑓(𝑥𝑖), the binary 

indicator ( 𝑦𝑖 ) results ‘1’ if the class label is correct 

classification for the ith observation. The loss is calculated for 

each class per observation and sum up to the result. We have 

obtained the learned parameters of each objective function of 

pre-trained ANN model. 

3.4.4. Step 4. Transfer the learned information 

The proposed SiMuS-TL method is established based on the 

assumption noted; the parameters from a specific pre-trained 

model could find the labels of partial targets that come into 

particular groups. The target domain task(𝒯𝑇) mainly depends 

on source labels and transfer learning. It can be represented 

by two components, 𝑦𝑇
𝑐 ∈ 𝒴and 𝐴𝑁𝑁𝑇 learned by training 

data pairs from 𝒟𝐺𝑚
∗  and based on 𝑃𝑇

𝐺𝑚
∗

 as shown below.  

𝒯𝑇 = {𝑦𝑇
𝑐 ∈ 𝒴, 𝐴𝑁𝑁𝑇}        (13) 

Furthermore, the final 𝐴𝑁𝑁𝑇  model, are essentially 

transferring pre-trained knowledge to initialize the model and 

learning group-based feature patterns from the weighted 

samples collected. The final training data set is generated for 

predicting the target domain, denoted as Equation (14). 

 𝐷𝑇
∗ = {⋃ 𝐹𝑇(𝐷𝐺𝑚

∗ , 𝑃𝑇
𝐺𝑚

∗

)𝑘∗

𝑚=1 }      (14) 

Figure 3. explains the final step of the proposed SiMuS-TL 

method.  

 

Figure 3. Transfer pre-trained weights from multiple pre-

trained models as per the target sample distribution. 
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The 𝒯𝐺(.)
∗ represents the pre-trained model task. Learned 

parameters 𝑊𝑚
(𝑙)

 from multiple 𝐴𝑁𝑁𝑠 are transferred to the 

final model. Customized layer coping in the final ANN model 

implements transferring parameters. If we obtained a higher 

ratio 𝑃𝑇
𝐺𝑚

∗

for the specific group, we might use more weights 

that are layer-wise in the final network. Thus, we copied 

arbitrary layers with learned parameters in the final network. 

This study did not address which layer to pick on transferring 

or optimal layers from the specific model to transfer. 

Accompanying the adaption is succeeded; the purpose is to 

minimize the final model's loss. Importantly, parameters 

transferred from pre-trained ANNs, not required  

to train over as they have trained already. Therefore, these 

parameters are frozen through the process of fine-tuning the 

final model. The output of this predictive ANN model is the 

complete set of target states of the machinery under 

operation. 

 

3.5. An example of a practical scenario on state 

monitoring for rotating machinery operations. 

The proposed SiMuS-TL method is described using a 

practical example of faulty bearings. First, assume three types 

of bearings available, bearing 1, 2 and 3, in three different 

locations. Suppose that bearing 1 and 2 are multiple sources, 

and bearing 3, will be the unknown target currently in 

operation. Bearing 1 and 2 share similarities with bearing 3, 

but they are not identical to bearing 3. A run to failure 

experiments have been arranged for two bearings (bearing 1  

and 2) and studied the different states. They failed due to 

certain reasons, and three types of states are identified (𝑐 =
3 ) in degradation patterns and define as “Normal,” 

“Defective,” and “Failure.” The time-dependent waveform 

signals are captured from target bearing 3. Let us develop the 

proposed methodology to predict the states of heath of 

bearing 3. Figure 4. illustrates the work stream for the 

described example. In the 1st step of the proposed 

methodology, feature extraction is performed on time-

dependent vibration signals. 

 

 

 

 

Figure 4. Detailed work stream illustration of the proposed methodology for two sources (bearing 1 and 2) and one target 

domain (bearing 3), clustered into three identity groups and three group-based pre-trained models. 

The mixed domain is formed based on weighted samples 

from three different bearings. Based on assumptions, there 

are hidden similarities between source bearings, 1 and 2, and 

the target bearing 3, which can be clustered into identity 

groups. Let us assume that the mixed domain is grouped into 

three identity groups (Group 1, Group 2, and Group 3). Now, 

we have three identity groups with independent distribution 

characteristics. Then, using ordinary searching criteria, the 

target features are separated. Notice that bearing 1 and 2 

features remain after separating the associated target bearing 

features in all identity groups. Then, group-based models 

(𝐴𝑁𝑁(.)) are built using labeled samples in each group.  

Formally, as mentioned in assumptions, an optimized set of 

pre-trained models' parameters (𝑊(.)
(.)

) can deliver the correct 

labels of the unlabeled targets clustered into identity groups. 

The optimized parameters list 𝑊(1)
(𝑙)

 is correlated to the 25% 

partial labels of bearing 3. Likewise, parameters 

(𝑊(2)
(𝑙)

& 𝑊(3)
(𝑙)

) correlated to the other two portion of 30% and 

45% partial labels respectively. One of the essential things to 
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notice is that the individual groups share similar distribution 

characteristics. Hence, we can introduce any parametric 

classification method to predict the target domain partially. 

However, the proposed method employs transfer learning to 

build the final model that effectively predicts the complete 

target domain. The trained weights (𝑊(.)
(.)

) are transplanted as 

customized layers in the final model to predict states of 

complete unlabeled bearing 3. 

4. CASE STUDY: UNKNOWN STATE PREDICTION USING 

SIMUS-TL METHOD  

The description of conducted experiments, setup, and the 

related results are described in this section. The performance 

of the proposed methodology is validated based on three case 

studies involving state prediction of rotating machinery. We 

evaluated four approaches, SVM, ANN without transfer, 

transfer learning method TLNN, and SiMuS-TL 

performance, and discussed the results for comparison and 

benchmarking. In a case study (A), a computer-controlled 

machine, "Skill boss manufacturing system (AMATROL 

Inc., n.d.)," was used for design experimentation. Afterward, 

publicly available bearing datasets, CWRU (Case Western 

Reserve University, n.d.)  and PU (Kimotho et al., 2016), are 

used to validate the proposed method in case studies (B) and 

(C), respectively. Eventually, the relative performances of 

four approaches on target state prediction, given multi-

sources with the same conditions and features extracted from 

the raw vibration signals, were demonstrated for a fair 

comparison. The ranking metrics for each model, area under 

the curve (AUC) of receiver operating characteristic (ROC) 

curves, are presented graphically to estimate classification 

accuracy for each class. The evaluation process is verified 

using Keras with TensorFlow libraries in the R programming 

software. Table 2 shows the confusion matrix and the 

performance measures formulated based on the confusion 

matrix. 

 

 Positive Class 

or “1” 

Negative Class 

or “0” 

Positive Prediction 

or “1” 

True Positive 

(TP) 

False Negative 

(FP) 

Negative 

Prediction or “0” 

False Positive 

(FN) 

True Negative 

(TN) 

Table 3. Confusion matrix 

 

4.1. Case study (A): Unknown state prediction on rotating 

machinery test bed 

Our objective of this experiment is to verify the effectiveness 

of SiMuS-TL against SVM, ANN, and TLNN on the 

unknown state prediction of the target where the operating 

conditions are different. 

4.1.1 Skill boss manufacturing and RDI technology  

Skill boss manufacturing 

The "Skill Boss Manufacturing" system evaluates practical 

knowledge required by manufacturing and production areas, 

particularly modeling & machine operation. It consists of an 

electric motor, frequency drive, interface design to 

incorporate operator and machine, pneumatic pick-and-place 

modules, quality testing and sorting metal and plastic blocks, 

and other features to develop skills for modern industry 

(AMATROL Inc., n.d.). However, in this experimentation, 

we consider the rotational phase of this system. 

RDI technology 

RDI Technologies introduces the Motion Amplification 

principles mechanism for detecting movement and vibration 

by analyzing a video (RDI Vibration Monitoring Equipment 

| Motion Amplification® & Analysis, n.d.). It motivates the 

industrial PdM application by detecting motion by a high-

resolution camera and allows continuous monitoring of 

products, processes, and machinery. 

4.1.2. Data description 

The Skill Boss Manufacturing system operated under 

different motor speed conditions (425 - 1650 RPM). 

Randomly ordered 50 runs of the system assigned to collect 

three time-series data from three location bearings in the 

system simultaneously. The motion amplification camera 

was used to capture the vibration signatures of three bearings. 

The vibration data are recorded repeatedly with a 200Hz 

sampling rate. In each time-dependent vibration signal 

consist of 416 data points.  The experimental setup of the skill 

boss manufacturing system is shown in Figure 5. The data 

sets were obtained as three independent data sets, bearing 1 - 

(B-1), bearing 2 - (B-2), and bearing 3 - (B-3). 

 

Figure 5. Experimental setup 

We introduced two states for rolling element bearings in 

rotating machinery test beds instead of introducing bearing 

faults, which are installed in different locations/tasks in the 

system. We use bearing 1 and 2 data to predict/detect the 

change of states of bearing 3, which are not identical to the 

trained model. In detail, a model trained with bearing 1 data 

cannot precisely detect the changes in bearing three because 

bearing 1 and 3's data distribution does not match as they are 
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installed to specific tasks. The time-dependent vibration 

signatures captured are shown in Figure 6. 

 

Figure 6. Vibration signals of 3 bearings at two different 

motor speeds (a) 425 and (b) 1525 rpm. Bearing 1 (B-1) and 

Bearing 2 (B-2) are multiple sources, and the bearing 3 (B-

3) is the unknown target. 

The next step is extracting features from the time-dependent 

vibration signals. 

4.1.3. Feature extraction and labeling  

Time-domain features and frequency-domain features can be 

calculated from raw vibration signals. Multiple features, such 

as the root means square (RMS) in the time domain and the 

frequency domain's spectral densities (SD), are widespread in 

condition-based monitoring (Caesarendra & Tjahjowidodo, 

2017). Saruhan et al., (2014) determined that the RMS value 

can be applied in diagnosing the bearings as an indicator of 

the average amplitude level of vibration signals. Also, Azeem 

et al., (2019) effectively analyzed vibration-based power 

spectral density to detect the faults of rolling element 

bearings. Therefore, for the demonstration purpose, RMS in 

the time domain and SD in the frequency domain were 

considered in this analysis.  

Labeling the feature pattern of each bearing is a challenging 

task because the recommended safe levels toward operating 

loads are different for various rolling element bearing. 

Individually, the design of the bearings depends on their 

corresponding function. In this experiment, the labeling 

process was done by user-defined conditions for the rolling  

 

bearings while changing the motor speeds of the system. We 

defined two conditions as a binary response, i.e., condition 1 

– "State 1" and condition 2 - "State 2". In the experiment, 

vibration signals were collected from 25 different motor 

speeds for each condition. State 1 represented the system's 

rotational speed of an electric motor, 425 to 1025 RPM, and 

the State 2 for 1050 to 1650 RPM. 

Recall that the target domain is unlabeled, and the multiple 

source domains are considered fully labeled. The target labels 

have been employed for the evaluation purpose. 

4.1.4. 𝑫𝒎𝒊𝒙 grouping and finding the target sample 

distribution  

First, standardized features from three bearings, located 

together with weighted samples to investigate the domain 

sharing based on similarities. Similar groups have been 

obtained by agglomerative clustering with Ward’s method. It 

ordinarily produces compressed or even-sized groups. The 

grouping results of 𝐷𝑚𝑖𝑥, such as grouped into 5,4,3, and 2 

groups based on similarities, are shown in the Figure 7. 

 

 

Figure 7. Dmix grouping results, (A) Five groups, (B) Four 

groups, (C) Three groups, (D) Two groups. 

For example, in the trial (C), the first group shares 55.33 %, 

the second group shares 34.66%, and the third group shares 

10% of total 𝑫𝒎𝒊𝒙. Using the indexing technique and 

searching through an individual group, we found the target 

sample distribution. The target sample distribution and 

domain sharing results in an individual group are shown in 

the Table 2. For example, in the trail (C), target sample 

distribution in three groups were 40%, 46%, and 14%, 

respectively. 
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Trial # 
Groups in 

𝑫𝒎𝒊𝒙 

𝑷𝑮𝒎
(%) 

𝑷𝑻
𝑮𝒎

∗

(%) 

G1 G2 G3 G4 G5 

Trial (A) 5 

𝑃𝐺1,2,…,5
 25.33 30 24 10.66 10 

𝑃𝑇

𝐺5
∗

 24 16 32 10 18 

Trial (B) 4 

𝑃𝐺1,2,..,4
 25.33 30 34.66 10 N/A 

𝑃𝑇
𝐺4

∗

 24 16 42 18 N/A 

Trial (C) 3 

𝑃𝐺1,2,3
 55.33 34.66 10 N/A N/A 

𝑃𝑇
𝐺3

∗

 40 46 14 N/A N/A 

Trial (D) 2 

𝑃𝐺1,2
 55.33 44.66 N/A N/A N/A 

𝑃𝑇
𝐺2

∗

 40 60 N/A N/A N/A 

Table 4: Domain sharing results and target sample distribution in an individual group of mixed domain, with grouping 

technique Ward’s method. 

 

However, we investigated the similarity grouping with 

multiple dissimilarity matrices combined with different 

linkage methods to extend the experimentation to compare 

the Ward’s linkage method.  

 

Dissimilarity 

metric 

𝑷𝑮𝒎
 (%) 

𝑷𝑻
𝑮𝒎

∗

(%) 

 

Complete 

 

Single 

 

Average 

 

Ward 1 

 

Ward 2 

Euclidean 

𝑃𝐺1,2
 (%)  90 10 99 1 99 1 55 45 55 45 

𝑃𝑇
𝐺2

∗

(%) 82 18 98 2 98 2 40 60 40 60 

 

Manhattan 

𝑃𝐺1,2
 (%)  90 10 99 1 90 10 55 45 52 48 

𝑃𝑇
𝐺2

∗

(%) 76 24 98 2 76 24 40 60 34 66 

 

Chebyshev 

𝑃𝐺1,2
  (%)  90 10 99 1 90 10 73 27 55 45 

𝑃𝑇
𝐺2

∗

(%) 76 24 98 2 76 24 66 34 40 60 

 

Canberra 

𝑃𝐺1,2
(%)  92 8 24 76 54 46 56 44 56 44 

𝑃𝑇
𝐺2

∗

 (%) 84 16 16 84 40 60 40 60 40 60 

Table 5: Various dissimilarity metrics and linkage methods result for the domain sharing results and the target sample 

distribution concerning two similar groups in 𝐷𝑚𝑖𝑥 . 
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The results are shown in the Table 5. The different 

dissimilarities metrics and corresponding linkage methods 

are subjected to two groups(𝒌 = 𝟐) in 𝑫𝒎𝒊𝒙.  

 

In this study, we have chosen Euclidean distance and Ward's 

linkage as the distance metric. The total number of elements 

was grouped into different groups. Purpose of demonstration 

and for simplicity, we step forward with two groups in the 

mixed domain. The two groups in the 𝐷𝑚𝑖𝑥 share similarities, 

approximately 55% and 45% in group 1 and group 2, 

respectively. Based on our findings, 40% of targets were 

grouped in the first group, and 60% were grouped into the 

second group.  

4.1.5. Train two pre-trained models to find unique 

weights/parameters for transfer learning  

The two pre-trained models are developed using the labeled 

samples. Recall that the labeled samples in a mixed domain 

adapted from multiple sources (bearing 1 & 2) are used to 

train the pre-trained models to predict the unknown target 

samples (the bearing 3).  

Hence, two pre-trained models were fine-tuned until they 

exhibit comparable minimum loss and more precise training 

and testing accuracy (Table 6). Performance measures are 

based on 80% of training samples and 20% of the validation 

set.

 

Model Sensitivity  

(SD) 

Specificity  

(SD) 

Precision  

(SD) 

Bal. 

Accuracy  

(SD) 

F1 Score  

(SD) 

AUC  

(SD) 

𝑴𝒐𝒅𝒆𝒍𝑮𝟏−𝑻𝒓𝒂𝒊𝒏𝒊𝒏𝒈 0.9748  

(0.0314) 

0.8509  

(0.0657) 

0.8326  

(0.0739) 

0.9128 

(0.0411) 

0.8969  

(0.0478) 

0.9342  

(0.0328) 

𝑴𝒐𝒅𝒆𝒍𝑮𝟏−𝑻𝒆𝒔𝒕𝒊𝒏𝒈 0.9615  

(0.0421) 

0.8235  

(0.0000) 

0.8062  

(0.0068) 

0.8925  

(0210) 

0.8768  

(0.0216) 

0.9275  

(0.0148) 

𝑴𝒐𝒅𝒆𝒍𝑮𝟐−𝑻𝒓𝒂𝒊𝒏𝒊𝒏𝒈 0.9091  

(0.0331) 

1.0000  

(0.0000) 

1.0000  

(0.0000) 

0.9545  

(0.0165) 

0.9521  

(0.0182) 

0.9826 

(0.0142) 

𝑴𝒐𝒅𝒆𝒍𝑮𝟐−𝑻𝒆𝒔𝒕𝒊𝒏𝒈 0.8333 

(0.1183) 

1.0000 

(0.0000) 

0.9481  

(0.0803) 

0.9166  

(0.0591) 

0.9054  

(0.0684) 

0.9992  

(0.0018) 

Table 6: The performances of the training and testing models developed in two groups. 

 

In the first group, the accuracy recorded in testing samples is 

89.25%, and an F1 score of 87.68%. In the second group, 

accuracy recorded in testing samples is 91.66%, and an F1 

score of 90.54%. We obtained the trained weights/parameters 

from each network separately to use it in the next step, which 

we called transfer parameters in the final network. As stated 

in assumptions, we expect the above-mentioned weights 

have the potential of predicting the unknown labels, which 

were grouped into a distinct group. 

 

4.1.6. Transfer pre-trained weights 

Developing the final model to predict unknown labels of the 

target is primarily based on transferring weights from pre-

trained models. The training samples were chosen as a 

weighted sample data set from two groups founded on target  

sample distribution. The trained weights from each pre-

trained model were transplanted (randomly selected layers 

copied) in the final model (Oquab, Bottou, Laptev, and Sivic, 

2014). However, randomly initialized layers were used to 

connect the incoming layers with trained weights in the final 

model. The transplanting took place in the reported literature 

(Oquab et al. 2014), and pre-trained weights do not train 

again. We freeze them in the final model, otherwise, we lose 

the benefit of using the transfer learning in this framework. 

We optimized the loss function and found the performance 

measures. The results are shown in the Table 7. 
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Model Sensitivity  

(SD) 

Specificity 

 (SD) 

Precision 

 (SD) 

Bal. 

Accuracy 

 (SD) 

F1 Score  

(SD) 

AUC  

(SD) 

𝑴𝒐𝒅𝒆𝒍Training 0.9398 

(0.0219) 

0.8201 

(0.0317) 

0.8572  

(0.0196) 

0.8799  

(0.0105) 

0.8962  

(0.0082) 

0.9488  

(0.0323) 

𝑴𝒐𝒅𝒆𝒍Testing 0.9722  

(0.0481) 

0.7303  

(0.1097) 

0.7381 

(0.1229) 

0.8511  

(0.0309) 

0.8326 

(0.0565) 

0.9291 

(0.0863) 

Table 7:  Final model training and testing accuracies 

 

In view of the results, the training accuracy of the final model 

is 87.99% and 85.11% over the testing sample. The F1 scores 

of training and testing data are 89.62% and 83.26%. 

4.1.7 Performance comparison 

Recall that the goal of our experiment is to verify the 

effectiveness of SiMuS-TL against traditional SVM, ANN 

(without transfer learning), and TLNN on state prediction of 

unknown target bearings. In the conventional setup with 

multi-sources with one target problem, models trained in the 

source domain are used to predict the target domain, namely, 

bearings 1 & 2 are sources, and bearing 3 is the target domain 

for all empirical comparisons. It should be noted that the  

same extracted features from sources and the target, 

handcrafted time and frequency features, are used to compare 

all methodologies relatively. Fine-tuning was introduced for 

optimizing ANN and TLNN models with the source domain 

data. In addition, grid search is used to optimize the 

hyperparameters for SVM. The training and testing processes 

were subjected to 10-fold cross-validation. The accuracy 

comparison results are shown in the Table 8. The receiver 

operating characteristic (ROC) curve has been utilized to 

compare the performances graphically. The comparison 

curves can be found in the Figure 8. 

 

 

 

Model 

Sensitivity 

(SD) 

Specificity 

(SD) 

Precision 

(SD) 

Bal. Accuracy 

(SD) 

F1 Score 

(SD) 

AUC 

(SD) 

ANN 
0.6488  

(0.1015) 

0.7600 

(0.1095) 

0.7474  

(0.0997) 

0.7044  

(0.0260) 

0.6841  

(0.0394) 

0.8662  

(0.0194) 

SVM 
0.7438  

(0.0998) 

0.6756  

(0.0247) 

0.6842  

(0.0410) 

0.7097  

(0.0616) 

0.7118  

(0.0691) 

0.6622  

(0.0594) 

TLNN 
0.7201  

(0.0808) 

0.8066  

(0.0154) 

0.7666  

(0.0517) 

0.7691  

(0.0227) 

0.7258  

(0.0411) 

0.9077  

(0.1267) 

SiMuS-TL 
0.8844  

(0.0858) 

0.8711 

(0.0388) 

0.8745  

(0.0281) 

0.8784 

(0.0357) 

0.8763  

(0.0399) 

0.9688  

(0.0147) 

Table 8: Case study (A) - performance comparison for predicting the states of target bearing 3  

 

It can be observed that the proposed SiMuS-TL method 

performs better than the SVM, ANN and TLNN methods, 

with significantly higher accuracy of 87.84% and F1 score of 

87.63% over the target domain. The area under curve (AUC) 

values show that SiMuS-TL reached the minimum FPR and 

FNR, proving the proposed SiMuS-TL method well-suited to 

fulfill the precision demands including the transferred pre-

trained weights. It is understood that SVM or ANN cannot 

perform well in this analysis as these methods follow the 

universal assumption that training and testing data comply 

with the same probability distribution. For this experiment, 

bearing 1 & 2 sample distributions are not identical to the 

same sample distribution of bearing 3, as they are installed in 

different tasks/locations. Thus, the TLNN method is 

comparably better than conventional methods but fails to 

yield the accuracies of our proposed SiMuS-TL method.
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Figure 8: Case study (A) - receiver operating characteristic 

curve for SVM, ANN, TLNN, and SiMuS-TL methods 

In this analysis, the class imbalance problem in each similar 

group was addressed by adjusting class weights while 

training the pre-trained models. Fine-tuning and 

transplanting custom layers explored the effectiveness of the 

model thoroughly. This makes it possible to have sensible 

results and enhance the performance of the final model 

classifier for state prediction on rolling element bearing in the 

system. 

4.2. Case study (B): Proposed SiMuS-TL method with 

Case Western Reserve University Bearing Data 

 

CWRU bearing data is collected from the experiment carried 

out in the test bed, including the electric motor, driving shaft, 

and dynamometer (Case Western Reserve University, n.d.). 

4.2.1. Data description 

In this experiment, multiple torques have been applied to 

generate damage in bearing components to measure the 

vibration signals in normal and faulty bearings. Electro-

discharge machining (EDM) is used to damage these motor 

bearings. The EDM process introduced faults ranging from 

0.007 inches in diameter to 0.040 inches in diameter at the 

rolling element, inner and outer race. Loads of 0 to 3 

horsepower(HP) (motor speeds of 1797 to 1720 RPM) 

changed to collect vibration data with two sampling 

frequencies, such as 12k and 48k. Also, this platform has 

different locations of vibration data, such as the drive and fan 

sides of the motor.  

4.2.2. Detail procedure of performance comparison  

We employ these experimental combinations of motor loads 

and inner race faults in the different motor speeds to define 

states in two sources and the target. We determined the fault 

diameter of 0.007 inches with 0 HP motor load with 12K Hz 

drive end as "State 1" and combinations with different motor 

speeds as "State 2." Furthermore, sources 1 and 2 include 

fault diameter 0.007 inches with motor load 1 HP and 2HP 

with 12K Hz drive end bearing fault data, respectively. The 

target comprises an inner race fault diameter of 0.007 inches 

with a motor load of 3 HP, which is unknown to the trained 

models in this problem setup. Each state sample has a length 

of 1000 data points, and sources 1 and 2 data have been used 

to classify the unknown states in the target. Furthermore, we 

compare the exact setup of algorithms as detailed previously 

in the case study (A) to exhibit the performances of our 

proposed method in CWRU data. In Table 9, the performance 

comparison can be found. The receiver operating 

characteristic (ROC) curve is used to compare the 

performances graphically. The comparison curves can be 

found in the Figure 9. 

Model 
Sensitivity 

(SD) 

Specificity 

(SD) 

Precision 

(SD) 

Bal. Accuracy 

(SD) 

F1 Score 

(SD) 

AUC 

(SD) 

ANN 
0.7351 

(0.1140) 

0.6616 

(0.0832) 

0.6678  

(0.0641) 

0.7001  

(0.0501) 

0.6972 

(0.0738) 

0.7791  

(0.0844) 

SVM 
0.6722  

(0.0404) 

0.6854  

(0.1271) 

0.6809 

(0.0883) 

0.6801  

(0.0622 

0.6743  

(0.0511) 

0.7015  

(0.0373) 

TLNN 
0.7233  

(0.0521) 

0.7228  

(0.1260) 

0.7083 

(0.0597) 

0.7251  

(0.0467) 

0.7153  

(0.0255) 

0.8271  

(0.0536) 

SiMuS-TL 
0.9900  

(0.0223) 

0.7500 

(0.1172) 

0.8038  

(0.0680) 

0.8701 

(0.0570) 

0.8856  

(0.0429) 

0.9366  

(0.0129) 

Table 9. Case study (B) - performance comparison for predicting the states of target in CWRU data 
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It has been found that our proposed SiMuS-TL method 

performs better than the SVM, ANN without transfer, and 

TLNN transfer learning method. Unknown state prediction 

by SiMuS-TL records a higher accuracy of 87.01% and an F1 

score of 88.56% over the target.  

 

Figure 9: Case study (B) - receiver operating characteristic 

curve for SVM, ANN, TLNN, and SiMuS-TL with CWRU 

data 

The AUC values show that SiMuS-TL attained the lowest 

FPR and FNR. The benchmarking transfer learning method 

TLNN offers higher accuracies than traditional methods 

without transferring parameters. Thus, TLNN fall against the 

SiMuS-TL proposed method showing comparably higher 

performances on the unknown target domain, revealing the 

proposed method well qualified to achieve a satisfactory level 

of accuracy.  

As case study (A) mentioned, fine-tuning, transplanting 

custom layers, and adjusting class weights are explored while 

training ANNs to enhance performance accuracy. 

4.3. Case study C: Proposed method SiMuS-TL with 

Paderborn University data 

The Paderborn bearing dataset is collected based on ball 

bearings of type 6203. This test rig consists of a rolling 

bearing test module, torque-measurement shaft, motor, and a 

flywheel. 

 

4.3.1. Data description 

The data was generated on experiments with 32 different 

bearing damages, such as 6 bearings are undamaged, 12 

bearings with damages artificially induced, and the rest of 14 

bearings with actual damages caused by accelerated lifetime. 

Artificial cracks are created through electric discharge 

machining, drilling, and manual electric engraving. These 

damages are generated on the inner and outer raceway in 

bearings. Motor currents and vibration data have been 

collected for all bearing damages concurrently. Four 

operating conditions are experimented with in the testing 

platform, changing motor rpm, load torque, and radial forces. 

All these signals were collected as 20 measurements with a 

fixed length of data points. In the paper (Kimotho et al., 

2016), one can find the detailed characterization of measures.  

 

4.3.2. Detailed procedure of performance comparison 

Using these experimental combinations, we selected an 

artificially pitted inner raceway bearing by an electric 

engraver in this study. The different rotational speeds of the 

drive system, load torque, and radial force parameters were 

considered while determining two sources and the target. The 

rotational speed of 1500 rpm, load torque of 0.7 Nm, and 

radial force of 1000 N are referred to as "State 1," and 

combinations of operating parameters with three other 

additional settings as "State 2." Moreover, sources 1 and 2 

possess 900 rpm, 0.7 Nm, 1000 N, and 1500 rpm, 0.1 Nm, 

with 1000 N in the drive system, respectively. The target 

incorporates an inner race fault with 1500 N, 0.7 Nm, and 400 

N, which is unknown to the trained models in this problem 

setup.  

Each sample has a length of 1000 data points, and unknown 

target states are classified using the knowledge of learning of 

sources 1 and 2 data. Furthermore, we compare the exact 

setup of algorithms as detailed previously in case study (A) 

to exhibit the performances of our proposed method in PU 

data. In Table 10, one can find the performance comparison, 

and Figure10. shows the AUC ROC curves.
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Model 
Sensitivity 

(SD) 

Specificity 

(SD) 

Precision 

(SD) 

Bal. Accuracy 

(SD) 

F1 Score 

(SD) 

AUC 

(SD) 

ANN 
0.5043 

(0.0247) 

0.8417 

(0.0151) 

0.7615 

(0.0239) 

0.6751 

(0.0197) 

0.6091 

(0.0275) 

0.7487 

(0.0252) 

SVM 
0.5091 

(0.0801) 

0.6809 

(0.1511) 

0.6654 

(0.1161) 

0.6146 

(0.0429) 

0.5967 

(0.0368) 

0.7064 

(0.0248) 

TLNN 
0.6486 

(0.0998) 

0.7190 

(0.0247) 

0.7027 

(0.0410) 

0.6838 

(0.0616) 

0.6732 

(0.0691) 

0.7470 

(0.0594) 

SiMuS-TL 
0.7931 

(0.0559) 

0.8295 

(0.0485) 

0.8251 

(0.0480) 

0.8109 

(0.0521) 

0.8087 

(0.0518) 

0.8959 

(0.0257) 

Table 10. Case study (C) - performance comparison for predicting the target in PU data 

The proposed SiMuS-TL method performs better than the 

SVM, ANN without transfer, and TLNN transfer learning 

method, with increased accuracy of 81.09% and an F1 score 

of 80.87% over the target. 

  

Figure 9: Case study (C) - receiver operating characteristic 

curve for SVM, ANN, TLNN, and SiMuS-TL methods 

The AUC ROC curves show that SiMuS-TL acquired the 

lowest FPR and FNR scores over the target domain. The 

target conditions are new to the trained models, which 

incorporate a different distribution compared to source 

conditions trained to make predictions in original models. 

The traditional SVM, ANN, scarcely captures this difference 

and fails to perform well in this experiment. Thus, the transfer 

learning method TLNN is slightly better than conventional 

methods but cannot perform as effectively as SiMuS-TL in 

this analysis. To enhance the results, we introduced adjusting 

class weights to reduce the class imbalances while training 

and fine-tuning parameters. 

4.4. Discussion   

We experimented with the unknown state prediction 

problem, utilizing three different test datasets to investigate 

the multi-sources and one target problem. The target is not 

identical to the source, which describes that they have 

dissimilar distributions. In detail, the problem setup 

described in the case study (A), the sources, and the target 

bearing's locations/tasks are not identical. In case studies B 

& C, the operating conditions are different for sources and 

the target. The conventional ML algorithms, SVM, and ANN 

without transfer could not capture these differences, so the 

established classification boundaries with sources will drift 

when the condition changes and performance measures are 

degraded in the target domain. However, the transfer learning 

method TLNN benchmarking in this study shows 

comparably better results in unknown state prediction in the 

target as opposed to conventional methods. It reveals that 

transfer learning can be superior in predicting changes in 

conditions reasonable. However, the proposed method 

SiMuS-TL performs better than TLNN in all three datasets, 

proving the proposed similarity-based transfer learning 

qualified to meet the precision demands. 

5. CONCLUSION AND FUTURE WORK 

This paper develops an effective machinery state prediction 

method by classifying time series signals for PdM. Our 

method addresses numerous gaps in the state-of-the-art, 

including complex/multiple operating conditions, a lack of 

data samples, and conventional machine learning algorithms 

following a universal assumption of homogeneous 

distribution that is not practical in real-world scenarios yet 

are recurring issues. In this method, we introduced similarity-

based transfer learning to combine the intelligence of 

multiple sources to classify time series signals with limited 

data availability. The significant contribution of this study 

can be listed as follows.   

• We developed a novel state prediction method for 

machinery to identifying the unknown conditions of 

machinery in operation to encourage PdM applications.  

• We addressed multi-source transfer learning instead of 

single-source transfer learning with one target problem. 

• We introduced a new domain called "mixed domain" to 

identify the similarities and dissimilarities between 

multiple sources and the target. 
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• The state prediction results were compared with the 

conventional ML techniques SVM, ANN, and transfer 

learning method TLNN, to verify the effectiveness of 

the proposed method. 

• The experimented results in various case studies, (A), 

(B), and (C) demonstrated that the proposed SiMuS-TL 

reached the maximum classification accuracies over the 

unknown target, which endorses the proposed method's 

effectiveness.   

There exist two interesting issues to be addressed in future 

research. The proposed framework of SiMuS-TL assumes 

that similarities between the multiple sources and target 

domains are shared. If they do not share the similarities, the 

target samples are grouped separately from any source 

similarities in the mixed domain. Therefore, addressing this 

scenario is one of the interesting open research problems to 

extend the current framework in the future. In addition, we 

assumed that sources and the target share the same label 

space in this study. However, the proposed method needs 

some extensions if there are multiple label spaces or 

differences in the source and target tasks, i.e., multi-task 

domain problem.  

 

We acknowledge the low interpretability of the proposed 

method as we introduced similarity-based transferring 

parameters from task-specific pre-trained models. This is one 

major limitation of any purely data-driven method. 

Therefore, further investigation is mandatory for the potential 

improvement concerning low interpretability. Moreover, the 

effect of training/validation ratio affection, compatibility of 

forming a specific training/validation ratio with transfer 

learning, and optimizing transferred layers and weights while 

building a final model under multi-task learning are potential 

improvements to be investigated in the future. 
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