116 research outputs found

    A Comment on "The Far Future of Exoplanet Direct Characterization" - the Case for Interstellar Space Probes

    Full text link
    Following on from ideas presented in a recent paper by Schneider et al. (2010) on "The Far Future of Exoplanet Direct Characterization", I argue that they have exaggerated the technical obstacles to performing such 'direct characterization' by means of fast (order 0.1c) interstellar space probes. A brief summary of rapid interstellar spaceflight concepts that may be found in the literature is presented. I argue that the presence of interstellar dust grains, while certainly something which will need to be allowed for in interstellar vehicle design, is unlikely to be the kind of 'show stopper' suggested by Schneider et al. Astrobiology as a discipline would be a major beneficiary of developing an interstellar spaceflight capability, albeit in the longer term, and I argue that astrobiologists should keep an open mind to the possibilities.Comment: Accepted for publication in Astrobiolog

    The Cosmology of Asymmetric Brane Modified Gravity

    Full text link
    We consider the asymmetric branes model of modified gravity, which can produce late time acceleration of the universe and compare the cosmology of this model to the standard Λ\LambdaCDM model and to the DGP braneworld model. We show how the asymmetric cosmology at relevant physical scales can be regarded as a one-parameter extension of the DGP model, and investigate the effect of this additional parameter on the expansion history of the universe.Comment: 21 pages, 9 figures, journal versio

    Estimating the tensor-to-scalar ratio and the effect of residual foreground contamination

    Full text link
    We consider future balloon-borne and ground-based suborbital experiments designed to search for inflationary gravitational waves, and investigate the impact of residual foregrounds that remain in the estimated cosmic microwave background maps. This is achieved by propagating foreground modelling uncertainties from the component separation, under the assumption of a spatially uniform foreground frequency scaling, through to the power spectrum estimates, and up to measurement of the tensor to scalar ratio in the parameter estimation step. We characterize the error covariance due to subtracted foregrounds, and find it to be subdominant compared to instrumental noise and sample variance in our simulated data analysis. We model the unsubtracted residual foreground contribution using a two-parameter power law and show that marginalization over these foreground parameters is effective in accounting for a bias due to excess foreground power at low \ell. We conclude that, at least in the suborbital experimental setups we have simulated, foreground errors may be modeled and propagated up to parameter estimation with only a slight degradation of the target sensitivity of these experiments derived neglecting the presence of the foregrounds.Comment: 19 pages, 12 figures, accepted for publication in JCA

    Detection of Extrasolar Planets by Gravitational Microlensing

    Full text link
    Gravitational microlensing provides a unique window on the properties and prevalence of extrasolar planetary systems because of its ability to find low-mass planets at separations of a few AU. The early evidence from microlensing indicates that the most common type of exoplanet yet detected are the so-called "super-Earth" planets of ~10 Earth-masses at a separation of a few AU from their host stars. The detection of two such planets indicates that roughly one third of stars have such planets in the separation range 1.5-4 AU, which is about an order of magnitude larger than the prevalence of gas-giant planets at these separations. We review the basic physics of the microlensing method, and show why this method allows the detection of Earth-mass planets at separations of 2-3 AU with ground-based observations. We explore the conditions that allow the detection of the planetary host stars and allow measurement of planetary orbital parameters. Finally, we show that a low-cost, space-based microlensing survey can provide a comprehensive statistical census of extrasolar planetary systems with sensitivity down to 0.1 Earth-masses at separations ranging from 0.5 AU to infinity.Comment: 43 pages. Very similar to chapter 3 of Exoplanets: Detection, Formation, Properties, Habitability, John Mason, ed. Springer (April 3, 2008

    SPIDER: Probing the Early Universe with a Suborbital Polarimeter

    Full text link
    We evaluate the ability of SPIDER, a balloon-borne polarimeter, to detect a divergence-free polarization pattern ("B-modes") in the Cosmic Microwave Background (CMB). In the inflationary scenario, the amplitude of this signal is proportional to that of the primordial scalar perturbations through the tensor-to-scalar ratio r. We show that the expected level of systematic error in the SPIDER instrument is significantly below the amplitude of an interesting cosmological signal with r=0.03. We present a scanning strategy that enables us to minimize uncertainty in the reconstruction of the Stokes parameters used to characterize the CMB, while accessing a relatively wide range of angular scales. Evaluating the amplitude of the polarized Galactic emission in the SPIDER field, we conclude that the polarized emission from interstellar dust is as bright or brighter than the cosmological signal at all SPIDER frequencies (90 GHz, 150 GHz, and 280 GHz), a situation similar to that found in the "Southern Hole." We show that two ~20-day flights of the SPIDER instrument can constrain the amplitude of the B-mode signal to r<0.03 (99% CL) even when foreground contamination is taken into account. In the absence of foregrounds, the same limit can be reached after one 20-day flight.Comment: 29 pages, 8 figures, 4 tables; v2: matches published version, flight schedule updated, two typos fixed in Table 2, references and minor clarifications added, results unchange

    MOA-cam3: a wide-field mosaic CCD camera for a gravitational microlensing survey in New Zealand

    Full text link
    We have developed a wide-field mosaic CCD camera, MOA-cam3, mounted at the prime focus of the Microlensing Observations in Astrophysics (MOA) 1.8-m telescope. The camera consists of ten E2V CCD4482 chips, each having 2kx4k pixels, and covers a 2.2 deg^2 field of view with a single exposure. The optical system is well optimized to realize uniform image quality over this wide field. The chips are constantly cooled by a cryocooler at -80C, at which temperature dark current noise is negligible for a typical 1-3 minute exposure. The CCD output charge is converted to a 16-bit digital signal by the GenIII system (Astronomical Research Cameras Inc.) and readout is within 25 seconds. Readout noise of 2--3 ADU (rms) is also negligible. We prepared a wide-band red filter for an effective microlensing survey and also Bessell V, I filters for standard astronomical studies. Microlensing studies have entered into a new era, which requires more statistics, and more rapid alerts to catch exotic light curves. Our new system is a powerful tool to realize both these requirements.Comment: Experimental Astronomy in pres

    Microlensing as a probe of the Galactic structure; 20 years of microlensing optical depth studies

    Full text link
    Microlensing is now a very popular observational astronomical technique. The investigations accessible through this effect range from the dark matter problem to the search for extra-solar planets. In this review, the techniques to search for microlensing effects and to determine optical depths through the monitoring of large samples of stars will be described. The consequences of the published results on the knowledge of the Milky-Way structure and its dark matter component will be discussed. The difficulties and limitations of the ongoing programs and the perspectives of the microlensing optical depth technique as a probe of the Galaxy structure will also be detailed.Comment: Accepted for publication in General Relativity and Gravitation. General Relativity and Gravitation in press (2010) 0
    corecore