250 research outputs found

    Electroweak top-quark pair production at the LHC with Z′Z' bosons to NLO QCD in POWHEG

    Get PDF
    We present the calculation of the NLO QCD corrections to the electroweak production of top-antitop pairs at the CERN LHC in the presence of a new neutral gauge boson. The corrections are implemented in the parton shower Monte Carlo program POWHEG. Standard Model (SM) and new physics interference effects are properly taken into account. QED singularities, first appearing at this order, are consistently subtracted. Numerical results are presented for SM and Z′Z' total cross sections and distributions in invariant mass, transverse momentum, azimuthal angle and rapidity of the top-quark pair. The remaining theoretical uncertainty from scale and PDF variations is estimated, and the potential of the charge asymmetry to distinguish between new physics models is investigated for the Sequential SM and a leptophobic topcolor model.Comment: 33 pages, 15 figures, 1 table. Discussion added on uncertainties from parton showers and NLL contribution

    Diáspora e Colonização

    Get PDF

    Decays of Scalar and Pseudoscalar Higgs Bosons into Fermions: Two-loop QCD Corrections to the Higgs-Quark-Antiquark Amplitude

    Full text link
    As a first step in the aim of arriving at a differential description of neutral Higgs boson decays into heavy quarks, h→QQˉXh \to Q {\bar Q}X, to second order in the QCD coupling αS\alpha_S, we have computed the hQQˉhQ{\bar Q} amplitude at the two-loop level in QCD for a general neutral Higgs boson which has both scalar and pseudoscalar couplings to quarks. This amplitude is given in terms of a scalar and a pseudoscalar vertex form factor, for which we present closed analytic expressions in terms of one-dimensional harmonic polylogarithms of maximum weight 4. The results hold for arbitrary four-momentum squared, q2q^2, of the Higgs boson and of the heavy quark mass, mm. Moreover we derive the approximate expressions of these form factors near threshold and in the asymptotic regime m2/q2≪1m^2/q^2 \ll 1.Comment: 56 pages, 2 figure

    NNLO QCD×EW corrections to Z production in the q q channel

    Get PDF
    We present the first results for the O(ααs) corrections to the total partonic cross section of the process qq→Z+X, with the complete set of contributions, that include photonic and massive weak gauge boson effects. The results are relevant for the precise determination of the hadronic Z boson production cross section. Virtual and real corrections are calculated analytically using the reduction to the master integrals and their evaluation through differential equations. Real corrections are dealt with using the reverse-unitarity method. They require the evaluation of a new set of two-loop master integrals, with up to three internal massive lines. In particular, three of them are expressed in terms of elliptic integrals. We verify the absence, at this perturbative order, of initial-state mass singularities proportional to a weak massive virtual correction to the quark-gluon splitting

    SFM-MVS photogrammetry for rockfall analysis and hazard assessment along the ancient roman via Flaminia road at the Furlo gorge (Italy)

    Get PDF
    Rockfall events represent significant hazards for areas characterized by high and steep slopes and therefore effective mitigation controls are essential to control their effect. There are a lot of examples all over the world of anthropic areas at risk because of their proximity to a rock slope. A rockfall runout analysis is a typical 3D problem, but for many years, because of the lack of specific software, powerful computers, and economic reasons, a 2D approach was normally adopted. However, in recent years the use of 3D software has become quite widespread and different runout working approaches have been developed. The contribution and potential use of photogrammetry in this context is undoubtedly great. This paper describes the application of a 3D hybrid working approach, which considers the integrated use of traditional geological methods, Terrestrial Laser Scanning, and drone based Digital Photogrammetry. Such approach was undertaken in order to perform the study of rockfall runout and geological hazard in a natural slope in Italy in correspondence of an archaeological area. Results show the rockfall hazard in the study area and highlights the importance of using photogrammetry for the correct and complete geometrical reconstruction of slope, joints, and block geometries, which is essential for the analysis and design of proper remediation measures

    NNLO massive corrections to Bhabha scattering and theoretical precision of BabaYaga@NLO

    Full text link
    We provide an exact calculation of next-to-next-to-leading order (NNLO) massive corrections to Bhabha scattering in QED, relevant for precision luminosity monitoring at meson factories. Using realistic reference event selections, exact numerical results for leptonic and hadronic corrections are given and compared with the corresponding approximate predictions of the event generator BabaYaga@NLO. It is shown that the NNLO massive corrections are necessary for luminosity measurements with per mille precision. At the same time they are found to be well accounted for in the generator at an accuracy level below the one per mille. An update of the total theoretical precision of BabaYaga@NLO is presented and possible directions for a further error reduction are sketched.Comment: 5 pages, 3 tables, contrib. to proceedings of International Workshop on e+e- collisions: from Phi to Psi, PHIPSI11, BINP, Novosibirsk, Russia, September 19-22, 201

    Next-to-leading-order QCD Corrections to Higgs Production in association with a Jet

    Full text link
    We compute the next-to-leading-order (NLO) QCD corrections to the Higgs pT distribution in Higgs production in association with a jet via gluon fusion at the LHC, with exact dependence on the mass of the quark circulating in the heavy-quark loops. The NLO corrections are presented including the top-quark mass, and for the first time, the bottom-quark mass as well. Further, besides the on-shell mass scheme, we consider for the first time a running mass renormalisation scheme. The computation is based on amplitudes which are valid for arbitrary heavy-quark masses.Comment: LaTeX, 7 pages, 5 figure

    Precise predictions for Higgs production in models with color-octet scalars

    Full text link
    We describe an effective-theory computation of the next-to-next-to-leading order (NNLO) QCD corrections to the gluon-fusion production of a Higgs boson in models with massive color-octet scalars in the (8,1)_0 representation. Numerical results are presented for both the Tevatron and the LHC. The estimated theoretical uncertainty is greatly reduced by the inclusion of the NNLO corrections. Color-octet scalars can increase the Standard Model rate by more than a factor of two in allowed regions of parameter space.Comment: 6 pages, 5 figures, to appear in the proceedings of the "10th DESY Workshop on Elementary Particle Theory: Loops and Legs in Quantum Field Theory", Woerlitz, Germany, April 25-30, 201

    Mini-review on Monte Carlo programs for Bhabha scattering

    Full text link
    We review the status of Monte Carlo generators presently used for simulations of the large-angle Bhabha process at electron-positron colliders of moderately high energy (flavour factories), operating at centre-of-mass energies between about 1 GeV and 10 GeV. It is shown how the theoretical accuracy reached by present Bhabha programs for physics at flavour factories is at the level of 0.1% and, therefore, comparable with that reached about a decade ago for luminosity monitoring through small-angle Bhabha scattering at LEP.Comment: Contribution to the Proceedings of the 9th DESY workshop on "Loops and Legs in Quantum Field Theory", Sondershausen, April 200

    Double-real corrections at O(ααs) to single gauge boson production

    Get PDF
    We consider the O(\u3b1\u3b1s)corrections to single on-shell gauge boson production at hadron colliders. We concentrate on the contribution of all the subprocesses where the gauge boson is accompanied by the emission of two additional real partons and we evaluate the corresponding total cross sections. The latter are divergent quantities, because of soft and collinear emissions, and are expressed as Laurent series in the dimensional regularization parameter. The total cross sections are evaluated by means of reverse unitarity, i.e.\ua0expressing the phase-space integrals in terms of two-loop forward box integrals with cuts on the final-state particles. The results are reduced to a combination of master integrals, which eventually are evaluated in terms of generalized polylogarithms. The presence of internal massive lines in the Feynman diagrams, due to the exchange of electroweak gauge bosons, causes the appearance of 14 master integrals which were not previously known in the literature and have been evaluated via differential equations
    • …
    corecore