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We present the first results for the OðααsÞ corrections to the total partonic cross section of the process
qq̄ → Z þ X, with the complete set of contributions, that include photonic and massive weak gauge boson
effects. The results are relevant for the precise determination of the hadronic Z boson production cross
section. Virtual and real corrections are calculated analytically using the reduction to the master integrals
and their evaluation through differential equations. Real corrections are dealt with using the reverse-
unitarity method. They require the evaluation of a new set of two-loop master integrals, with up to three
internal massive lines. In particular, three of them are expressed in terms of elliptic integrals. We verify the
absence, at this perturbative order, of initial-state mass singularities proportional to a weak massive virtual
correction to the quark-gluon splitting.
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I. INTRODUCTION

The production of an electrically neutral gauge boson at
hadron colliders is one of the historical processes for our
understanding of QCD. The case of the decay of the Z
boson into a pair of high transverse momentum leptons is
known as the Drell-Yan (DY) process, and it is particularly
important for the setting of several high-precision tests of
the electroweak (EW) sector of the StandardModel (SM). It
allows for instance a precise measurement of the weak
mixing angle and of the properties of the Z boson. The Z
boson DY production is one of the processes known with
high perturbative accuracy. The pioneering calculations of
the next-to-leading order (NLO) [1] and next-to-next-to-
leading order (NNLO) [2,3] QCD corrections to the total
inclusive cross section were extended later to the fully
differential description of the leptonic final state [4–7].
Finally, the evaluation of the next-to-next-to-next-to-leading
order QCD corrections at the production threshold is
presented for the gauge boson total cross section in

Refs. [8–10] and rapidity distribution in Refs. [11,12].
The impact of the NLO EW corrections, studied in
Refs. [13–17], is at theOð1%Þ level as far as the total cross
section is concerned, and it is comparable to that of the
NNLO QCD contributions. The NNLO QED corrections to
four-fermion scattering are presented in Refs. [18,19].
Kinematic distributions may receive additional enhance-
ments in specific phase-space regions, yielding corrections
at the Oð10%Þ level or more. Since the high-precision
determination of EW parameters requires control over the
kinematic distributions in some cases at the per mille level
(cf. Refs. [20–22] for a discussion on specific examples), the
evaluation of the mixed QCD-EW corrections has emerged
as necessary for both the study of the gauge boson
resonances and of the high-mass/-momentum tails of the
kinematic distributions [23,24]. First analytic results are
presented in Refs. [25–29] and have been comparedwith the
approximations available via Monte Carlo simulation tools
[30,31]: while the bulk of the leading effects, separately due
to QCD and QED corrections, can be correctly evaluated for
several observables, the remaining subleading QED effects
and the genuine QCD-weak corrections are still missing in
these tools. Furthermore, a realistic estimate of the theo-
retical uncertainties must account for several sources of
ambiguity related to the recipes used in the matching of
separate results for the QCD and EW contributions to the
scattering amplitude. For these reasons, an exact calculation
of the full set of OðααsÞ corrections to the DY processes is
desirable. In Refs. [32–34], the mixed QCD-QED correc-
tions to the total cross section and transverse momentum
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spectrum of an on-shell Z boson are discussed. The
evaluation of all the master integrals (MIs) relevant to
compute the full set of QCD-EW mixed corrections to
the DY process (including off-resonance terms) is docu-
mented in Refs. [35,36].
In this article, we present the first results for the total

inclusive cross section of production of an on-shell Z boson
in the quark-antiquark partonic channel, including the
complete set of QCD-EW corrections ofOðααsÞ. We retain
the dependence on the massive states exchanged in the
loops. As a consequence of that, the calculation involves a
set of two-loop phase-space integrals, previously not
available in the literature. Their analytic expression will
be presented in a forthcoming paper. We also have the
occasion to check the infrared structure of the corrections
up to NNLO level, including the cases where a massive EW
boson is exchanged. We verify the absence of initial-state
mass singularities proportional to a weak massive virtual
correction to the quark-gluon splitting.
The calculation we are presenting in this article is an

important step toward the evaluation of the full set of QCD-
EW corrections to the hadronic cross section.

II. THEORETICAL FRAMEWORK

The inclusive production cross section σtot of a Z boson
at hadron colliders (pp → Z þ X) can be written, using the
factorization theorem, as

σtotðτÞ ¼
X

i;j∈q;q̄;g;γ

Z
dx1dx2f̂iðx1Þf̂jðx2Þσ̂ijðzÞ: ð1Þ

In Eq. (1), τ ¼ m2
Z
S and z ¼ m2

Z
ŝ are the ratio of the squared Z

boson mass, mZ, with S and ŝ the hadronic and partonic
center of mass energy squared, respectively. S and ŝ are
related by ŝ ¼ x1x2S through the Bjorken momentum
fractions x1; x2. The bare cross section σ̂ij of the partonic
process ij → Z þ X is convoluted with the bare parton
densities f̂iðxÞ. The sum over i; j includes quarks (q),
antiquarks (q̄), gluons (g), and photons (γ). In the SM, we
have a double expansion of the partonic cross sections in
the electromagnetic and strong coupling constants, α and
αs, respectively,

σ̂ijðzÞ ¼
X∞
m;n¼0

αms α
nσ̂ðm;nÞ

ij ðzÞ; ð2Þ

where σ̂ðm;nÞ
ij is the correction ofOðαms αnÞ to the lowest-order

inclusive total cross section σ̂ð0;0Þij of the partonic scattering
ij → Z. For a given initial state, the inclusive total cross
section receives contributions from processes with different
final-state multiplicities, due to real parton emissions. In this
paper, we focus on the qq̄ initiated scattering, and, for
definiteness, we treat the case of an up-type quark: qq̄ ¼ uū.

The full set of OðααsÞ corrections to σ̂uū stems from the
evaluation of the following scattering processes,

uū → Z; ð3Þ
uū → Zg; ð4Þ
uū → Zγ; ð5Þ
uū → Zgγ; ð6Þ
uū → Zuū; ð7Þ
uū → Zdd̄; ð8Þ

where d represents a down-type massless quark. Explicit
expressions for the process (6) andQCD-QEDcontributions
to process (3) have been presented in Refs. [37] and [25,38],
respectively. The corresponding results for dd̄ initiated
subprocesses can be derived from our results with the

replacements Qu ↔ Qd, Ið3Þu ↔ Ið3Þd , where Qf; I
ð3Þ
f are

the electric charge and the third component of the weak
isospin, for a fermion f, respectively.
The process (3) receives contributions from the inter-

ference between two-loop 2 → 1 Feynman diagrams, with
the corresponding tree-level expressions; we refer to this as
the double-virtual corrections. The processes (4) and (5)
receive contributions from the interference between the
one-loop 2 → 1 Feynman diagrams and the corresponding
tree-level expressions. We refer to them as real-virtual
corrections. The last three processes, (6)–(8), receive
contributions from tree-level 2 → 3 Feynman diagrams,
and we refer to them as double-real corrections.
The full set of OðααsÞ corrections can be organized in

two gauge invariant subsets: QCD-QED and QCD-weak
contributions. Processes (3)–(7) contribute to the former,
and processes (3), (4), (7), and (8) contribute to the latter.
While one gluon exchange, real or virtual, is always
present, we identify three groups of contributions to the
amplitudes depending on the presence of one real or virtual
photon, of one virtual Z boson, or of one/two virtual W
bosons. We further observe that the last two groups are
separately gauge invariant. In our definition of total cross
section, we do not include the processes with the emission
of one extra massive on-shell gauge boson, as their
measurement depends on the details of the experimental
event selection. Furthermore, these corrections do not
contribute to the infrared structure of the process.
The amplitude of the two tree-level processes (7)

and (8) has two components of Oð ffiffiffi
α

p
αsÞ (an internal

gluon exchange) and Oð ffiffiffi
α

p
αÞ (an internal weak boson

exchange), respectively, and their interference is, therefore,
of Oðα2αsÞ.

III. COMPUTATIONAL DETAILS

We follow a diagrammatic approach to obtain all the
relevant contributions to the inclusive production cross
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section uū → Z þ X. A detailed description of the compu-
tation will be presented in a dedicated publication. In this
paper, we sketch an outline of the procedure. We need to
include contributions with two-loop virtual corrections,
with one real emission and one loop (real virtual), with
two real emissions (double real), and factorizable contri-
butions stemming, e.g., from the interference of two one-
loop diagrams. We treat all the processes with the same
algorithmic approach. First, we compute all the Feynman
diagrams contributing to a given amplitude with FeynArts

[39] and QGRAF [40], we perform algebraic simplifications
with FORM [41] and Mathematica; we use integration-by-
parts [42–44] and Lorentz-invariance identities [45] to
reduce the Feynman integrals to MIs. The reduction to
the MIs is carried out using the computer programs KIRA

[46], LiteRed [47,48], and REDUZE2 [49,50] The entire
procedure is performed within dimensional regularization
in D ¼ 4 − 2ε space-time dimensions. Then, we employ
the method of differential equations [45,51–56] to compute
the MIs, for both the pure virtual and real emission
corrections. In the latter case, the phase-space delta
functions are dealt with via the reverse unitarity technique
[57,58], which is based on the observation that the
replacement known as Cutkowsky rule holds in terms of
distributions:

δðp2 −m2Þ → 1

2πi

�
1

p2 −m2 þ iη
−

1

p2 −m2 − iη

�
: ð9Þ

It is thus possible to rewrite the phase-space measure of
each final-state particle as the difference of two propagators
with opposite prescriptions for their imaginary part (where
η stands for an infinitesimal positive real number). We
transform the integration over the full phase space of the
additional parton/s for processes (4)–(8), into the evaluation
of the cut two-loop integrals with an on-shell condition on
the lines that correspond to the final-state particles.
The pure virtual MIs are already available in the

literature [59–64], in the case of off-shell Z boson. Since
in our case the Z boson is on shell, we have computed these
integrals taking the appropriate on-shell limit. The off-shell
integrals and most of their on-shell limit have been checked
using FIESTA [65–67]. The two- and three-body phase-
space MIs with only gluon or photon lines are already
available in the literature [58]. To validate our routines
developed for the present calculation, however, we have
recomputed them and found complete agreement with the
known expressions. We have computed all the new MIs,
with one or two internal massive lines, with the differential
equations method. We have fixed the boundary conditions
calculating the soft limit (z → 1) of the MIs.
After integration over the phase-space of the emitted

real partons, the partonic total cross section depends solely
on the variable z. The virtual contributions are propor-
tional to δð1 − zÞ and are therefore constants, which are

found from the on-shell limit of the virtual MIs, i.e.,
evaluating the corresponding generalized harmonic poly-
logarithms (GPLs) [68–71] at z ¼ 1. All the constants
arising from this limit can be reduced to the basis
introduced in Ref. [72]. The part that corresponds to
processes (4)–(8) is expressed almost entirely in terms of
δð1 − zÞ and of GPLs, or cyclotomic harmonic polylogar-
ithms [73], functions of z. In some parts of the calculation,
the package HarmonicSums [74–76] has been used. Three MIs
appearing in processes (7) and (8) satisfy elliptic differ-
ential equations, whose homogeneous behavior has already
been studied in Ref. [62]. We have obtained their complete
solution with a series expansion around z ¼ 1 (see, for
instance, Refs. [62,77–82]).
In the calculation of the MIs, the masses of the W and Z

bosons are set equal to mZ, to avoid the presence of an
additional energy scale in the problem, which would make
the analytical solution of the differential equations in terms
of known functions more complicated. While for the virtual
corrections this choice is not strictly necessary, since the
knowledge of the MIs for off-shell Z would allow for a
complete and exact calculation in the case ofmW ≠ mZ, the
reduction of one mass scale in the computation of the real
emission processes is in fact very effective and reduces the
complication of the calculation. Moreover, the equal-mass
choice does not prevent us from obtaining an analytical
solution with arbitrary precision for each of the affected
MIs. In fact, we can perform an expansion of the integrand
in powers of the ratio δ2m ¼ ðm2

Z −m2
WÞ=m2

Z, and reduce all
the terms of the series to a combination of the same basic
equal-mass MIs. We stress that the couplings of the Z
boson to fermions are expressed in terms of the physical
value of the weak mixing angle sin2 θW ¼ 1 −m2

W=m
2
Z.

A. Ultraviolet renormalization

The calculation is performed in the EW background field
gauge (BFG) [83], which allows the identification of two
sets of UV-finite amplitudes. On the one hand is the
combination of 1 Particle Irreducible (1PI) vertex and
external quark wave function corrections, which satisfies,
also in the EW SM, a QED-like Ward identity, with the
consequent cancellation of the UV poles. On the other hand
we consider the external Z boson wave function and the
lowest-order coupling renormalization corrections; their
combination is, order-by-order in perturbation theory,
UV finite.
We need to perform the renormalization of the couplings

and the fields up to OðααsÞ for process (3), while we need
only the OðαÞ renormalization of process (4). One-loop
QCD corrections to processes (3) and (5) are UV finite,
after field renormalization, again because of a QED-like
Ward identity. We remark that the Z boson field and the EW
couplings do not receive OðαsÞ renormalization correc-
tions. The renormalization of the quark field receives EW
corrections, and we consider this in the on-shell scheme.
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The EW gauge sector of the SM Lagrangian depends on
three parameters ðg; g0; vÞ, the two gauge couplings and
the Higgs-doublet vacuum expectation value. After the
introduction of counterterms and renormalized parameters,
we express the latter as a combination of ðGμ; mW;mZÞ
[84], respectively the Fermi constant and the W and Z
boson masses.
A subset of the EW corrections can be reabsorbed in a

redefinition of the weak mixing angle that appears in the
vector coupling of the Z boson to fermions. These
corrections are split, in the EW BFG, in two UV-finite
groups, one due to vertex corrections and the other due to
external γ − Z corrections and to the weak mixing angle
counterterm (a shortcut for a combination ofW and Z mass
counterterms). In BFG, the second group vanishes, because
of a Ward identity [83] satisfied by the γ − Z wave function
correction.
An alternative scheme where the effective leptonic weak

mixing angle appears as an input parameter is discussed
in Ref. [86].

B. Infrared singularities and mass factorization

The OðααsÞ corrections are organized in two gauge-
invariant subsets: QCD-QED and QCD-weak contribu-
tions. The former involve the exchange of two massless
bosons, yielding the maximal degree of infrared singularity
at the second perturbative order, i.e., ε−4. The latter have
only the poles due to a soft and/or collinear gluon. The
cancellation of the soft singularities takes place separately
in the two subsets, once the contributions of virtual
corrections and of the corresponding soft real emissions
are combined. To be more precise, for the QCD-QED
subset, the process (7) does not yield soft singularities, so
that the cancellation takes place when the processes (3)–(6)
are combined. In the case of the QCD-weak subset, soft
singularities appear only in processes (3) and (4) and cancel
when the two are summed. When we consider the combi-
nation of the cross sections of the processes (3)–(8), we
are thus left with initial-state collinear singularities only.
The processes (3)–(7) contribute to initial-state collinear
singularities within the QCD-QED subset, while in the
QCD-weak case, only processes (3)–(4) have initial-state
collinear singularities of QCD origin. These singularities
can be removed by mass factorization. The physical parton
densities fiðx; μFÞ are defined, at the factorization scale μF,
by introducing the mass factorization kernel Γij, which
subtracts the initial-state collinear singularities

f̂i ¼ fj ⊗ Γij: ð10Þ

The kernel can be expanded as a series in α and αs,

Γij ¼
X∞
m;n¼0

αms α
nΓðm;nÞ

ij ; ð11Þ

where Γð1;0Þ
ij is the QCD leading order splitting kernel, Γð0;1Þ

ij

is its QED analog, and Γð1;1Þ
ij is the mixed QCD-QED

contribution to the splitting kernels, recently presented in
Ref. [87]. After the replacement of Eq. (10) in Eq. (1), we
obtain the total cross section expressed in terms of
subtracted, finite, partonic cross sections σijðz; μFÞ:

σtotðzÞ¼
X

i;j∈q;q̄;g;γ

Z
dx1dx2fiðx1;μFÞfjðx2;μFÞσijðz;μFÞ:

ð12Þ

The σij admit a perturbative expansion in powers of α and
αs, in analogy to Eq. (2). In this paper, we present the

results for σð1;1Þuū .
In processes (3) and (4), the weak virtual correction to

the splitting vertex q → qg might induce an additional

contribution to the subtraction kernel Γð1;1Þ
ij . However, we

have checked that such a term vanishes, in the massless
quark case, as a consequence of the conservation of the
vector and axial-vector currents.

IV. RESULTS

In order to discuss the sizes of the different sets of
radiative corrections, we define

αsασ
ð1;1Þ
uū ¼ σð0Þuū ðΔð1;1Þ

uū;γ þ Δð1;1Þ
uū;Z þ Δð1;1Þ

uū;WÞ ð13Þ

where σð0;0Þuū ≡ σð0Þuū δð1 − zÞ ¼ 4
ffiffiffi
2

p
Gμðπ=NcÞðC2

v;u þ
C2
a;uÞδð1 − zÞ is the Born cross section of the process

uū → Z, with Nc the number of colors and Cv=a;u the
vector/axial-vector couplings of the Z boson to the up
quark. In the processes (3)–(8), there are radiative correc-
tions due to the exchange in the internal lines of a photon, a
Z boson, and of one or two W boson/s, which can be
identified and grouped according to the respective charges.
In addition to these diagrammatic contributions, we take
into account the counterterms necessary for the renormal-
ization of the overall proportionality factor g= cos θW of the
lowest order process; we group the latter together with the
diagrammatic contributions due to the exchange of one or

two W boson/s. We introduce the symbols Δð1;1Þ
uū;K with K ¼

γ; Z;W to represent these three groups of corrections. The
splitting in three subsets has both a technical and physical
interest: besides the check of Ward identities, which hold
separately for each group, we have the possibility to show
the dependence on the value of the EW charges of the
initial-state quarks. For the sake of comparison, we
introduce the NLO-QCD correction to the same partonic

process, defined as αsσ
ð1;0Þ
uū ¼ σð0ÞuūΔ

ð1;0Þ
uū . In Fig. 1, we

present, as a function of the partonic variable z, the

contribution of the different subsets of diagrams, Δð1;1Þ
uū;K
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with K ¼ γ; Z;W, and their sum. We also plot Δð1;0Þ
uū ,

divided by a factor 10. We exclude from the plot all the
contributions proportional to δð1 − zÞ, while we keep all
the plus-distribution terms, limiting the plot at z ¼ 0.99.
For the numerical evaluation, we use the following input
parameters: mW ¼ 80.385GeV, mZ ¼ 91.1876 GeV, Gμ¼
1.1663781×10−5GeV−2, mt¼173.5GeV, mH ¼ 125GeV,
and αsðmZÞ ¼ 0.118. mt and mH are the top quark and
Higgs boson mass, respectively. We set the factorization
scale μF ¼ mZ.
We observe that, in the high-energy limit (z → 0), the

cross sections are damped by the incoming flux factor,
proportional to z. The divergent behavior for z → 1, due to
the exchange of at least one massless boson, is also evident
for all the contributions. The values of the EW charges, in
the two subsets with one Z (red) or with one/two Ws
exchange (magenta), are responsible for the different
sizes and for the opposite signs of the two contributions,
visible in the z → 1 limit. We observe that in the case of the

dd̄ → Z þ X process, the contributions with one/two Ws
exchange have similar size but opposite sign. The total
contribution to the hadron-level cross section from this
subset of diagrams of the two partonic processes is
expected to undergo an important cancellation, modulated
by the convolution with the proton PDFs. The QCD-QED
corrections, shown in blue in Fig. 1, are not monotonic,
contrary to the NLO-QCD ones, and have a maximum for
z ∼ 0.85. They are smaller than the QCD-weak contribution
for z ∈ ½0.8; 0.9�, but become larger in absolute size when
z → 1, because of the higher power of the threshold
logarithms. The possibility of having a second Z boson

in a resonant configuration yields the kink of the Δð1;1Þ
uū;Z

curve (red) at z ¼ 1=4, as can be observed in the inset
of Fig. 1.
In conclusion, we have presented the first results for the

total inclusive partonic cross section for the process
qq̄ → Z þ X, including the exact OðααsÞ corrections, with
both photon and W=Z boson exchanges. The results are
analytic and are expressed in terms of GPLs, but also
contain three elliptic MIs, which have been computed with
a series expansion around z ¼ 1. The complete solution of
the infrared structure of the process and the exact evaluation
of all the relevant virtual corrections represent an important
step toward the evaluation of the hadron-level cross section
for Z production at this perturbative order.
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