216 research outputs found
A new prozostrodontian cynodont (Therapsida) from the Late Triassic Riograndia Assemblage Zone (Santa Maria Supersequence) of Southern Brazil
We report here on a new prozostrodontian cynodont, Botucaraitherium belarminoi gen. et sp. nov., from the Late Triassic Riograndia Assemblage Zone (AZ) of the CandelĂĄria Sequence (Santa Maria Supersequence), collected in the BotucaraĂ Hill Site, CandelĂĄria Municipality, state of Rio Grande do Sul, Brazil. The new taxon is based on a single specimen (holotype MMACR-PV-003-T) which includes the left lower jaw, without postdentary bones, bearing the root of the last incisor, canine and four postcanines plus one partial crown inside the dentary, not erupted, and two maxillary fragments, one with a broken canine and another with one postcanine. The features of the lower jaw and lower/upper postcanines resemble those of the prozostrodontians Prozostrodon brasiliensis from the older Hyperodapedon AZ and Brasilodon quadrangularis and Brasilitherium riograndensis from the same Riograndia AZ. The inclusion of Botucaraitherium within a broad phylogenetic analysis, positioned it as a more derived taxon than tritylodontids, being the sister-taxon of Brasilodon, Brasilitherium plus Mammaliaformes. Although the new taxon is based on few cranial elements, it represents a additional faunal component of the Triassic Riograndia AZ of southern Brazil, in which small-sized derived non-mammaliaform cynodonts, closely related to the origin of mammaliaforms, were ecologically well succeed and taxonomically diverseNĂłs reportamos aqui um novo cinodonte prozostrodonte, Botucaraitherium belarminoi gen. et sp. nov., do TriĂĄssico Tardio da Zona de Assembleia (ZA) de Riograndia da SequĂŞncia CandelĂĄria (SupersequĂŞncia Santa Maria), coletado no afl oramento SĂtio BotucaraĂ, no municĂpio de CandelĂĄria, Rio Grande do Sul, Brasil. O novo tĂĄxon estĂĄ baseado em um Ăşnico espĂŠcime (holĂłtipo MMACR-PV- 003-T) o qual inclui a mandĂbula esquerda, sem os ossos pĂłs-dentĂĄrios, com a raiz do Ăşltimo incisivo preservada, o canino e quatro dentes pĂłs-caninos, alĂŠm de uma coroa parcial, nĂŁo erupcionada, do quinto pĂłs-canino, e dois fragmentos maxilares, um com um canino quebrado, e outro portando apenas um dente pĂłs-canino. As feiçþes mandibulares e dentĂĄrias assemelham-se Ă quelas dos cinodontes prozostrodontes Prozostrodon brasiliensis da ZA de Hyperodapedon, mais antiga, e de Brasilodon quadrangularis e Brasilitherium riograndensis da mesma ZA de Riograndia. A inclusĂŁo de Botucaraitherium em uma ampla anĂĄlise filogenĂŠtica posicionou-o como um tĂĄxon mais derivado do que os tritilodontĂdeos, sendo o tĂĄxon-irmĂŁo de Brasilodon, Brasilitherium e mais Mammaliaformes. Apesar de o novo tĂĄxon ser baseado em poucos elementos cranianos, ele representa um componente faunĂstico adicional na ZA de Riograndia do TriĂĄssico sul-brasileiro, na qual os cinodontes nĂŁo-mamaliaformes de pequeno tamanho, intimamente relacionados Ă origem dos mamĂferos, foram ecologicamente bem sucedidos e taxonomicamente diverso
Histological evidence for a supraspinous ligament in sauropod dinosaurs
Supraspinous ossified rods have been reported in the sacra of some derived sauropod dinosaurs. Although different hypotheses have been proposed to explain the origin ofthis structure, histological evidence has never been provided to support or reject any of them. In order to establish its origin, we analyse and characterize the microstructure of thesupraspinous rod of two sauropod dinosaurs from the Upper Cretaceous of Argentina. The supraspinous ossified rod is almost entirely formed by dense Haversian bone. Remains ofprimary bone consist entirely of an avascular tissue composed of two types of fibre-like structures, which are coarse and longitudinally (parallel to the main axis of the element) oriented. These structures are differentiated on the basis of their optical properties under polarized light. Very thin fibrous strands are also observed in some regions. These small fibres are all oriented parallel to one another but perpendicular to the element main axis. Histological features of the primary bone tissue indicate that the sacral supraspinous rod corresponds to an ossified supraspinous ligament. The formation of this structure appears to have been a non-pathological metaplastic ossification, possibly induced by the continuous tensile forces applied to the element.Fil: Cerda, Ignacio Alejandro. Consejo Nacional de Investigaciones CientĂficas y TĂŠcnicas. Centro CientĂfico TecnolĂłgico Conicet - Patagonia Norte. Instituto de InvestigaciĂłn en PaleobiologĂa y GeologĂa; Argentina. Universidad Nacional de RĂo Negro; ArgentinaFil: Casal, Gabriel. Universidad Nacional de la Patagonia; ArgentinaFil: MartĂnez, RubĂŠn DarĂo. Universidad Nacional de la Patagonia ; ArgentinaFil: Ibiricu, Lucio Manuel. Consejo Nacional de Investigaciones CientĂficas y TĂŠcnicas. Centro Nacional PatagĂłnico; Argentin
A New Basal Sauropodomorph (Dinosauria: Saurischia) from Quebrada del Barro Formation (Marayes-El Carrizal Basin), Northwestern Argentina
BACKGROUND: Argentinean basal sauropodomorphs are known by several specimens from different basins; Ischigualasto, El Tranquilo, and Mogna. The Argentinean record is diverse and includes some of the most primitive known sauropodomorphs such as Panphagia and Chromogisaurus, as well as more derived forms, including several massospondylids. Until now, the Massospondylidae were the group of basal sauropodomorphs most widely spread around Pangea with a record in almost all continents, mostly from the southern hemisphere, including the only record from Antarctica. METHODOLOGY/PRINCIPAL FINDING: We describe here a new basal sauropodomorph, Leyesaurus marayensis gen. et sp. nov., from the Quebrada del Barro Formation, an Upper Triassic-Lower Jurassic unit that crops out in northwestern Argentina. The new taxon is represented by a partial articulated skeleton that includes the skull, vertebral column, scapular and pelvic girdles, and hindlimb. Leyesaurus is diagnosed by a set of unique features, such as a sharply acute angle (50 degrees) formed by the ascending process of the maxilla and the alveolar margin, a straight ascending process of the maxilla with a longitudinal ridge on its lateral surface, noticeably bulging labial side of the maxillary teeth, greatly elongated cervical vertebrae, and proximal articular surface of metatarsal III that is shelf-like and medially deflected. Phylogenetic analysis recovers Leyesaurus as a basal sauropodomorph, sister taxon of Adeopapposaurus within the Massospondylidae. Moreover, the results suggest that massospondylids achieved a higher diversity than previously thought. CONCLUSIONS/SIGNIFICANCE: Our phylogenetic results differ with respect to previous analyses by rejecting the massospondylid affinities of some taxa from the northern hemisphere (e.g., Seitaad, Sarahsaurus). As a result, the new taxon Leyesaurus, coupled with other recent discoveries, suggests that the diversity of massospondylids in the southern hemisphere was higher than in other regions of Pangea. Finally, the close affinities of Leyesaurus with the Lower Jurassic Massospondylus suggest a younger age for the Quebrada del Barro Formation than previously postulated
A Basal Sauropodomorph (Dinosauria: Saurischia) from the Ischigualasto Formation (Triassic, Carnian) and the Early Evolution of Sauropodomorpha
BACKGROUND: The earliest dinosaurs are from the early Late Triassic (Carnian) of South America. By the Carnian the main clades Saurischia and Ornithischia were already established, and the presence of the most primitive known sauropodomorph Saturnalia suggests also that Saurischia had already diverged into Theropoda and Sauropodomorpha. Knowledge of Carnian sauropodomorphs has been restricted to this single species. METHODOLOGY/PRINCIPAL FINDINGS: We describe a new small sauropodomorph dinosaur from the Ischigualsto Formation (Carnian) in northwest Argentina, Panphagia protos gen. et sp. nov., on the basis of a partial skeleton. The genus and species are characterized by an anteroposteriorly elongated fossa on the base of the anteroventral process of the nasal; wide lateral flange on the quadrate with a large foramen; deep groove on the lateral surface of the lower jaw surrounded by prominent dorsal and ventral ridges; bifurcated posteroventral process of the dentary; long retroarticular process transversally wider than the articular area for the quadrate; oval scars on the lateral surface of the posterior border of the centra of cervical vertebrae; distinct prominences on the neural arc of the anterior cervical vertebra; distal end of the scapular blade nearly three times wider than the neck; scapular blade with an expanded posterodistal corner; and medial lamina of brevis fossa twice as wide as the iliac spine. CONCLUSIONS/SIGNIFICANCE: We regard Panphagia as the most basal sauropodomorph, which shares the following apomorphies with Saturnalia and more derived sauropodomorphs: basally constricted crowns; lanceolate crowns; teeth of the anterior quarter of the dentary higher than the others; and short posterolateral flange of distal tibia. The presence of Panphagia at the base of the early Carnian Ischigualasto Formation suggests an earlier origin of Sauropodomorpha during the Middle Triassic
Theropod Fauna from Southern Australia Indicates High Polar Diversity and Climate-Driven Dinosaur Provinciality
The Early Cretaceous fauna of Victoria, Australia, provides unique data on the composition of high latitude southern hemisphere dinosaurs. We describe and review theropod dinosaur postcranial remains from the AptianâAlbian Otway and Strzelecki groups, based on at least 37 isolated bones, and more than 90 teeth from the Flat Rocks locality. Several specimens of medium- and large-bodied individuals (estimated up to âź8.5 metres long) represent allosauroids. Tyrannosauroids are represented by elements indicating medium body sizes (âź3 metres long), likely including the holotype femur of Timimus hermani, and a single cervical vertebra represents a juvenile spinosaurid. Single specimens representing medium- and small-bodied theropods may be referrable to Ceratosauria, Ornithomimosauria, a basal coelurosaur, and at least three taxa within Maniraptora. Thus, nine theropod taxa may have been present. Alternatively, four distinct dorsal vertebrae indicate a minimum of four taxa. However, because most taxa are known from single bones, it is likely that small-bodied theropod diversity remains underestimated. The high abundance of allosauroids and basal coelurosaurs (including tyrannosauroids and possibly ornithomimosaurs), and the relative rarity of ceratosaurs, is strikingly dissimilar to penecontemporaneous dinosaur faunas of Africa and South America, which represent an arid, lower-latitude biome. Similarities between dinosaur faunas of Victoria and the northern continents concern the proportional representatation of higher clades, and may result from the prevailing temperateâpolar climate of Australia, especially at high latitudes in Victoria, which is similar to the predominant warmâtemperate climate of Laurasia, but distinct from the arid climate zone that covered extensive areas of Gondwana. Most dinosaur groups probably attained a near-cosmopolitan distribution in the Jurassic, prior to fragmentation of the Pangaean supercontinent, and some aspects of the hallmark âGondwananâ fauna of South America and Africa may therefore reflect climate-driven provinciality, not vicariant evolution driven by continental fragmentation. However, vicariance may still be detected at lower phylogenetic levels
Dinosaur Speed Demon: The Caudal Musculature of Carnotaurus sastrei and Implications for the Evolution of South American Abelisaurids
In the South American abelisaurids Carnotaurus sastrei, Aucasaurus garridoi, and, to a lesser extent Skorpiovenator bustingorryi, the anterior caudal ribs project at a high dorsolateral inclination and have interlocking lateral tips. This unique morphology facilitated the expansion of the caudal hypaxial musculature at the expense of the epaxial musculature. Distinct ridges on the ventrolateral surfaces of the caudal ribs of Aucasaurus garridoi are interpreted as attachment scars from the intra caudofemoralis/ilio-ischiocaudalis septa, and confirm that the M. caudofemoralis of advanced South American abelisaurids originated from a portion of the caudal ribs. Digital muscle models indicate that, relative to its overall body size, Carnotaurus sastrei had a substantially larger M. caudofemoralis than any other theropod yet studied. In most non-avian theropods, as in many extant sauropsids, the M. caudofemoralis served as the primary femoral retractor muscle during the locomotive power stroke. This large investment in the M. caudofemoralis suggests that Carnotaurus sastrei had the potential for great cursorial abilities, particularly short-burst sprinting. However, the tightly interlocking morphology of the anterior caudal vertebrae implies a reduced ability to make tight turns. Examination of these vertebral traits in evolutionary context reveals a progressive sequence of increasing caudofemoral mass and tail rigidity among the Abelisauridae of South America
Evidence for Avian Intrathoracic Air Sacs in a New Predatory Dinosaur from Argentina
Background: Living birds possess a unique heterogeneous pulmonary system composed of a rigid, dorsally-anchored lung and several compliant air sacs that operate as bellows, driving inspired air through the lung. Evidence from the fossil record for the origin and evolution of this system is extremely limited, because lungs do not fossilize and because the bellow-like air sacs in living birds only rarely penetrate (pneumatize) skeletal bone and thus leave a record of their presence. Methodology/Principal Findings: We describe a new predatory dinosaur from Upper Cretaceous rocks in Argentina, Aerosteon riocoloradensis gen. et sp. nov., that exhibits extreme pneumatization of skeletal bone, including pneumatic hollowing of the furcula and ilium. In living birds, these two bones are pneumatized by diverticulae of air sacs (clavicular, abdominal) that are involved in pulmonary ventilation. We also describe several pneumatized gastralia (ââstomach ribsââ), which suggest that diverticulae of the air sac system were present in surface tissues of the thorax. Conclusions/Significance: We present a four-phase model for the evolution of avian air sacs and costosternal-driven lung ventilation based on the known fossil record of theropod dinosaurs and osteological correlates in extant birds: (1) Phase IâElaboration of paraxial cervical air sacs in basal theropods no later than the earliest Late Triassic. (2) Phase IIâDifferentiation of avian ventilatory air sacs, including both cranial (clavicular air sac) and caudal (abdominal air sac) divisions, in basal tetanurans during the Jurassic. A heterogeneous respiratory tract wit
A Nomenclature for Vertebral Fossae in Sauropods and Other Saurischian Dinosaurs
The axial skeleton of extinct saurischian dinosaurs (i.e., theropods, sauropodomorphs), like living birds, was pneumatized by epithelial outpocketings of the respiratory system. Pneumatic signatures in the vertebral column of fossil saurischians include complex branching chambers within the bone (internal pneumaticity) and large chambers visible externally that are bounded by neural arch laminae (external pneumaticity). Although general aspects of internal pneumaticity are synapomorphic for saurischian subgroups, the individual internal pneumatic spaces cannot be homologized across species or even along the vertebral column, due to their variability and absence of topographical landmarks. External pneumatic structures, in contrast, are defined by ready topological landmarks (vertebral laminae), but no consistent nomenclatural system exists. This deficiency has fostered confusion and limited their use as character data in phylogenetic analysis.We present a simple system for naming external neural arch fossae that parallels the one developed for the vertebral laminae that bound them. The nomenclatural system identifies fossae by pointing to reference landmarks (e.g., neural spine, centrum, costal articulations, zygapophyses). We standardize the naming process by creating tripartite names from âprimary landmarks,â which form the zygodiapophyseal table, âsecondary landmarks,â which orient with respect to that table, and âtertiary landmarks,â which further delineate a given fossa.The proposed nomenclatural system for lamina-bounded fossae adds clarity to descriptions of complex vertebrae and allows these structures to be sourced as character data for phylogenetic analyses. These anatomical terms denote potentially homologous pneumatic structures within Saurischia, but they could be applied to any vertebrate with vertebral laminae that enclose spaces, regardless of their developmental origin or phylogenetic distribution
A basal lithostrotian titanosaur (Dinosauria: Sauropoda) with a complete skull: Implications for the evolution and paleobiology of titanosauria
We describe Sarmientosaurus musacchioi gen. et sp. nov., a titanosaurian sauropod dinosaur from the Upper Cretaceous (Cenomanian - Turonian) Lower Member of the Bajo Barreal Formation of southern Chubut Province in central Patagonia, Argentina. The holotypic and only known specimen consists of an articulated, virtually complete skull and part of the cranial and middle cervical series. Sarmientosaurus exhibits the following distinctive features that we interpret as autapomorphies: (1) maximum diameter of orbit nearly 40% rostrocaudal length of cranium; (2) complex maxilla - lacrimal articulation, in which the lacrimal clasps the ascending ramus of the maxilla; (3) medial edge of caudal sector of maxillary ascending ramus bordering bony nasal aperture with low but distinct ridge; (4) ´tongue-like´ ventral process of quadratojugal that overlaps quadrate caudally; (5) separate foramina for all three branches of the trigeminal nerve; (6) absence of median venous canal connecting infundibular region to ventral part of brainstem; (7) subvertical premaxillary, procumbent maxillary, and recumbent dentary teeth; (8) cervical vertebrae with ´strut-like´ centroprezygapophyseal laminae; (9) extremely elongate and slender ossified tendon positioned ventrolateral to cervical vertebrae and ribs. The cranial endocast of Sarmientosaurus preserves some of the most complete information obtained to date regarding the brain and sensory systems of sauropods. Phylogenetic analysis recovers the new taxon as a basal member of Lithostrotia, as the most plesiomorphic titanosaurian to be preserved with a complete skull. Sarmientosaurus provides a wealth of new cranial evidence that reaffirms the close relationship of titanosaurs to Brachiosauridae. Moreover, the presence of the relatively derived lithostrotian Tapuiasaurus in Aptian deposits indicates that the new Patagonian genus represents a ´ghost lineage´ with a comparatively plesiomorphic craniodental form, the evolutionary history of which is missing for at least 13 million years of the Cretaceous. The skull anatomy of Sarmientosaurus suggests that multiple titanosaurian species with dissimilar cranial structures coexisted in the early Late Cretaceous of southern South America. Furthermore, the new taxon possesses a number of distinctive morphologies - such as the ossified cervical tendon, extremely pneumatized cervical vertebrae, and a habitually downward- facing snout - that have rarely, if ever, been documented in other titanosaurs, thus broadening our understanding of the anatomical diversity of this remarkable sauropod clade. The latter two features were convergently acquired by at least one penecontemporaneous diplodocoid, and may represent mutual specializations for consuming low-growing vegetation.Fil: MartĂnez, RubĂŠn DarĂo. Universidad Nacional de la Patagonia; ArgentinaFil: Lamanna, Matthew C.. Carnegie Museum Of Natural History; Estados UnidosFil: Novas, Fernando Emilio. Consejo Nacional de Investigaciones CientĂficas y TĂŠcnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "bernardino Rivadavia"; ArgentinaFil: Ridgely, Ryan C.. Ohio University College Of Osteopathic Medicine; Estados UnidosFil: Casal, Gabriel. Universidad Nacional de la Patagonia; ArgentinaFil: MartĂnez, Javier E.. Hospital Regional de Comodoro Rivadavia; ArgentinaFil: Vita, Javier R.. Resonancia MagnĂŠtica Borelli; ArgentinaFil: Witmer, Lawrence M.. Ohio University College Of Osteopathic Medicine; Estados Unido
Tumor Cell Marker PVRL4 (Nectin 4) Is an Epithelial Cell Receptor for Measles Virus
Vaccine and laboratory adapted strains of measles virus can use CD46 as a receptor to infect many human cell lines. However, wild type isolates of measles virus cannot use CD46, and they infect activated lymphocytes, dendritic cells, and macrophages via the receptor CD150/SLAM. Wild type virus can also infect epithelial cells of the respiratory tract through an unidentified receptor. We demonstrate that wild type measles virus infects primary airway epithelial cells grown in fetal calf serum and many adenocarcinoma cell lines of the lung, breast, and colon. Transfection of non-infectable adenocarcinoma cell lines with an expression vector encoding CD150/SLAM rendered them susceptible to measles virus, indicating that they were virus replication competent, but lacked a receptor for virus attachment and entry. Microarray analysis of susceptible versus non-susceptible cell lines was performed, and comparison of membrane protein gene transcripts produced a list of 11 candidate receptors. Of these, only the human tumor cell marker PVRL4 (Nectin 4) rendered cells amenable to measles virus infections. Flow cytometry confirmed that PVRL4 is highly expressed on the surfaces of susceptible lung, breast, and colon adenocarcinoma cell lines. Measles virus preferentially infected adenocarcinoma cell lines from the apical surface, although basolateral infection was observed with reduced kinetics. Confocal immune fluorescence microscopy and surface biotinylation experiments revealed that PVRL4 was expressed on both the apical and basolateral surfaces of these cell lines. Antibodies and siRNA directed against PVRL4 were able to block measles virus infections in MCF7 and NCI-H358 cancer cells. A virus binding assay indicated that PVRL4 was a bona fide receptor that supported virus attachment to the host cell. Several strains of measles virus were also shown to use PVRL4 as a receptor. Measles virus infection reduced PVRL4 surface expression in MCF7 cells, a property that is characteristic of receptor-associated viral infections
- âŚ