114 research outputs found

    Comparison Process of Blood Heavy Metals Absorption Linked to Measured Air Quality Data in Areas with High and Low Environmental Impact

    Get PDF
    Air pollution is a problem shared by the entire world population, and researchers have highlighted its adverse effects on human health in recent years. The object of this paper was the relationship between the pollutants' concentrations measured in the air and the quantity of pollutant itself inhaled by the human body. The area chosen for the study has a high environmental impact given the significant presence on the territory of polluting activities. The Acerra area (HI) has a waste-to-energy plant and numerous industries to which polluting emissions are attributed. This area has always been the subject of study as the numbers of cancer patients are high. A survey on male patients to evaluate the heavy metals concentrations in the blood was conducted in the two areas and then linked to its values aero-dispersed. Using the air quality data measured by the monitoring networks in two zones, one with high environmental impact (HI) and one with low environmental impact (LI), the chronicle daily intake (CDI) of pollutants inhaled by a single person was calculated. The pollutants considered in this study are PM10 and four heavy metals (As, Cd, Ni, Pb) constituting the typical particulates of the areas concerned. The CDI values calculated for the two zones are significantly higher in the HI zone following the seasonal pollution trend

    Identification of Novel Predictor Classifiers for Inflammatory Bowel Disease by Gene Expression Profiling

    Get PDF
    BACKGROUND: Improvement of patient quality of life is the ultimate goal of biomedical research, particularly when dealing with complex, chronic and debilitating conditions such as inflammatory bowel disease (IBD). This is largely dependent on receiving an accurate and rapid diagnose, an effective treatment and in the prediction and prevention of side effects and complications. The low sensitivity and specificity of current markers burden their general use in the clinical practice. New biomarkers with accurate predictive ability are needed to achieve a personalized approach that take the inter-individual differences into consideration. METHODS: We performed a high throughput approach using microarray gene expression profiling of colon pinch biopsies from IBD patients to identify predictive transcriptional signatures associated with intestinal inflammation, differential diagnosis (Crohn's disease or ulcerative colitis), response to glucocorticoids (resistance and dependence) or prognosis (need for surgery). Class prediction was performed with self-validating Prophet software package. RESULTS: Transcriptional profiling divided patients in two subgroups that associated with degree of inflammation. Class predictors were identified with predictive accuracy ranging from 67 to 100%. The expression accuracy was confirmed by real time-PCR quantification. Functional analysis of the predictor genes showed that they play a role in immune responses to bacteria (PTN, OLFM4 and LILRA2), autophagy and endocytocis processes (ATG16L1, DNAJC6, VPS26B, RABGEF1, ITSN1 and TMEM127) and glucocorticoid receptor degradation (STS and MMD2). CONCLUSIONS: We conclude that using analytical algorithms for class prediction discovery can be useful to uncover gene expression profiles and identify classifier genes with potential stratification utility of IBD patients, a major step towards personalized therapy

    A Therapeutic Chemical Chaperone Inhibits Cholera Intoxication and Unfolding/Translocation of the Cholera Toxin A1 Subunit

    Get PDF
    Cholera toxin (CT) travels as an intact AB5 protein toxin from the cell surface to the endoplasmic reticulum (ER) of an intoxicated cell. In the ER, the catalytic A1 subunit dissociates from the rest of the toxin. Translocation of CTA1 from the ER to the cytosol is then facilitated by the quality control mechanism of ER-associated degradation (ERAD). Thermal instability in the isolated CTA1 subunit generates an unfolded toxin conformation that acts as the trigger for ERAD-mediated translocation to the cytosol. In this work, we show by circular dichroism and fluorescence spectroscopy that exposure to 4-phenylbutyric acid (PBA) inhibited the thermal unfolding of CTA1. This, in turn, blocked the ER-to-cytosol export of CTA1 and productive intoxication of either cultured cells or rat ileal loops. In cell culture studies PBA did not affect CT trafficking to the ER, CTA1 dissociation from the holotoxin, or functioning of the ERAD system. PBA is currently used as a therapeutic agent to treat urea cycle disorders. Our data suggest PBA could also be used in a new application to prevent or possibly treat cholera

    Targeting Huntington’s disease through histone deacetylases

    Get PDF
    Huntington’s disease (HD) is a debilitating neurodegenerative condition with significant burdens on both patient and healthcare costs. Despite extensive research, treatment options for patients with this condition remain limited. Aberrant post-translational modification (PTM) of proteins is emerging as an important element in the pathogenesis of HD. These PTMs include acetylation, phosphorylation, methylation, sumoylation and ubiquitination. Several families of proteins are involved with the regulation of these PTMs. In this review, I discuss the current evidence linking aberrant PTMs and/or aberrant regulation of the cellular machinery regulating these PTMs to HD pathogenesis. Finally, I discuss the evidence suggesting that pharmacologically targeting one of these protein families the histone deacetylases may be of potential therapeutic benefit in the treatment of HD

    Differential regulation of cell death pathways by the microenvironment correlates with chemoresistance and survival in leukaemia

    Get PDF
    Glucocorticoids (GCs) and topoisomerase II inhibitors are used to treat acute lymphoblastic leukaemia (ALL) as they induce death in lymphoid cells through the glucocorticoid receptor (GR) and p53 respectively. Mechanisms underlying ALL cell death and the contribution of the bone marrow microenvironment to drug response/resistance remain unclear. The role of the microenvironment and the identification of chemoresistance determinants were studied by transcriptomic analysis in ALL cells treated with Dexamethasone (Dex), and Etoposide (Etop) grown in the presence or absence of bone marrow conditioned media (CM). The necroptotic (RIPK1) and the apoptotic (caspase-8/3) markers were downregulated by CM, whereas the inhibitory effects of chemotherapy on the autophagy marker Beclin-1 (BECN1) were reduced suggesting CM exerts cytoprotective effects. GCs upregulated the RIPK1 ubiquitinating factor BIRC3 (cIAP2), in GC-sensitive (CEM-C7-14) but not in resistant (CEM-C1-15) cells. In addition, CM selectively affected GR phosphorylation in a site and cell-specific manner. GR is recruited to RIPK1, BECN1 and BIRC3 promoters in the sensitive but not in the resistant cells with phosphorylated GR forms being generally less recruited in the presence of hormone. FACS analysis and caspase-8 assays demonstrated that CM promoted a pro-survival trend. High molecular weight proteins reacting with the RIPK1 antibody were modified upon incubation with the BIRC3 inhibitor AT406 in CEM-C7-14 cells suggesting that they represent ubiquitinated forms of RIPK1. Our data suggest that there is a correlation between microenvironment-induced ALL proliferation and altered response to chemotherapy
    • …
    corecore