30 research outputs found

    A Genome-Scale Resource for the Functional Characterization of Arabidopsis Transcription Factors

    Get PDF
    SummaryExtensive transcriptional networks play major roles in cellular and organismal functions. Transcript levels are in part determined by the combinatorial and overlapping functions of multiple transcription factors (TFs) bound to gene promoters. Thus, TF-promoter interactions provide the basic molecular wiring of transcriptional regulatory networks. In plants, discovery of the functional roles of TFs is limited by an increased complexity of network circuitry due to a significant expansion of TF families. Here, we present the construction of a comprehensive collection of Arabidopsis TFs clones created to provide a versatile resource for uncovering TF biological functions. We leveraged this collection by implementing a high-throughput DNA binding assay and identified direct regulators of a key clock gene (CCA1) that provide molecular links between different signaling modules and the circadian clock. The resources introduced in this work will significantly contribute to a better understanding of the transcriptional regulatory landscape of plant genomes

    Cancer Associated Fibroblasts and Senescent Thyroid Cells in the Invasive Front of Thyroid Carcinoma

    Get PDF
    Thyroid carcinoma (TC) comprises several histotypes with different aggressiveness, from well (papillary carcinoma, PTC) to less differentiated forms (poorly differentiated and anaplastic thyroid carcinoma, PDTC and ATC, respectively). Previous reports have suggested a functional role for cancer-associated fibroblasts (CAFs) or senescent TC cells in the progression of PTC. In this study, we investigated the presence of CAFs and senescent cells in proprietary human TCs including PTC, PDTC, and ATC. Screening for the driving lesions BRAFV600E and N/H/KRAS mutations, and gene fusions was also performed to correlate results with tumor genotype. In samples with unidentified drivers, transcriptomic profiles were used to establish a BRAF- or RAS-like molecular subtype based on a gene signature derived from The Cancer Genome Atlas. By using immunohistochemistry, we found co-occurrence of stromal CAFs and senescent TC cells at the tumor invasive front, where deposition of collagen (COL1A1) and expression of lysyl oxidase (LOX) enzyme were also detected, in association with features of local invasion. Concurrent high expression of CAFs and of the senescent TC cells markers, COL1A1 and LOX was confirmed in different TC histotypes in proprietary and public gene sets derived from Gene Expression Omnibus (GEO) repository, and especially in BRAF mutated or BRAF-like tumors. In this study, we show that CAFs and senescent TC cells co-occur in various histotypes of BRAF-driven thyroid tumors and localize at the tumor invasive front

    Bacterial RuBisCO Is Required for Efficient Bradyrhizobium/Aeschynomene Symbiosis

    Get PDF
    Rhizobia and legume plants establish symbiotic associations resulting in the formation of organs specialized in nitrogen fixation. In such organs, termed nodules, bacteria differentiate into bacteroids which convert atmospheric nitrogen and supply the plant with organic nitrogen. As a counterpart, bacteroids receive carbon substrates from the plant. This rather simple model of metabolite exchange underlies symbiosis but does not describe the complexity of bacteroids' central metabolism. A previous study using the tropical symbiotic model Aeschynomene indica/photosynthetic Bradyrhizobium sp. ORS278 suggested a role of the bacterial Calvin cycle during the symbiotic process. Herein we investigated the role of two RuBisCO gene clusters of Bradyrhizobium sp. ORS278 during symbiosis. Using gene reporter fusion strains, we showed that cbbL1 but not the paralogous cbbL2 is expressed during symbiosis. Congruently, CbbL1 was detected in bacteroids by proteome analysis. The importance of CbbL1 for symbiotic nitrogen fixation was proven by a reverse genetic approach. Interestingly, despite its symbiotic nitrogen fixation defect, the cbbL1 mutant was not affected in nitrogen fixation activity under free living state. This study demonstrates a critical role for bacterial RuBisCO during a rhizobia/legume symbiotic interaction

    PRISM (Polarized Radiation Imaging and Spectroscopy Mission): A White Paper on the Ultimate Polarimetric Spectro-Imaging of the Microwave and Far-Infrared Sky

    Full text link
    PRISM (Polarized Radiation Imaging and Spectroscopy Mission) was proposed to ESA in response to the Call for White Papers for the definition of the L2 and L3 Missions in the ESA Science Programme. PRISM would have two instruments: (1) an imager with a 3.5m mirror (cooled to 4K for high performance in the far-infrared---that is, in the Wien part of the CMB blackbody spectrum), and (2) an Fourier Transform Spectrometer (FTS) somewhat like the COBE FIRAS instrument but over three orders of magnitude more sensitive. Highlights of the new science (beyond the obvious target of B-modes from gravity waves generated during inflation) made possible by these two instruments working in tandem include: (1) the ultimate galaxy cluster survey gathering 10e6 clusters extending to large redshift and measuring their peculiar velocities and temperatures (through the kSZ effect and relativistic corrections to the classic y-distortion spectrum, respectively) (2) a detailed investigation into the nature of the cosmic infrared background (CIB) consisting of at present unresolved dusty high-z galaxies, where most of the star formation in the universe took place, (3) searching for distortions from the perfect CMB blackbody spectrum, which will probe a large number of otherwise inaccessible effects (e.g., energy release through decaying dark matter, the primordial power spectrum on very small scales where measurements today are impossible due to erasure from Silk damping and contamination from non-linear cascading of power from larger length scales). These are but a few of the highlights of the new science that will be made possible with PRISM.Comment: 20 pages Late

    Characterization of the Nod-independent symbiosis between photosynthetic Bradyrhizobium and tropical legumes of the Aeschynomene genus.

    No full text
    Les Bradyrhizobium photosynthĂ©tiques sont capables d'induire la formation de nodules fixateurs d'azote chez certaines lĂ©gumineuses du genre Aeschynomene. La dĂ©couverte rĂ©cente que certaines de ces souches ne possĂšdent pas les gĂšnes canoniques nodABC indique l'existence d'un nouveau processus symbiotique rhizobium-lĂ©gumineuse indĂ©pendant des facteurs Nod. L'objectif de ce travail de thĂšse a consistĂ© Ă  avancer dans la comprĂ©hension des mĂ©canismes mis en jeu lors de cette nouvelle interaction. Dans un premier temps, Ă  travers diffĂ©rentes approches cytologiques, le processus par lequel la bactĂ©rie infecte la plante en l'absence de facteurs Nod a Ă©tĂ© dĂ©crit. Dans un deuxiĂšme temps, afin de mettre en Ă©vidence les bases molĂ©culaires de cette interaction, une banque de 15 000 mutants Tn5 de la souche ORS278 a Ă©tĂ© criblĂ©e sur plante. Ce criblage a permit l'identification de plus d'une centaine de gĂšnes bactĂ©riens intervenant durant le processus symbiotique. Les rĂ©sultats obtenus nous ont conduits Ă  proposer un modĂšle dans lequel la mise en place de la symbiose Nod-indĂ©pendante impliquerait, d'une part, la synthĂšse bactĂ©rienne d'une cytokinine permettant le dĂ©clenchement de l'organogenĂšse nodulaire, et d'autre part, d'autres signaux bactĂ©riens intervenant dans l'Ă©tape de reconnaissance avec la plante hĂŽte. Enfin, nous avons mis en place une technique de transformation gĂ©nĂ©tique d'Aeschynomene et validĂ© cet outil Ă  travers l'Ă©tude de l'expression hĂ©tĂ©rologue de la noduline prĂ©coce MtENOD11. Il peut Ă  prĂ©sent ĂȘtre envisagĂ© de conduire des Ă©tudes fonctionnelles sur Aeschynomene en vue de caractĂ©riser la voie de signalisation Nod-indĂ©pendante.The photosynthetic Bradyrhizobium are able to induce the formation of nitrogen-fixing nodules in some legumes of the Aeschynomene genus. The recent discovery that some of these strains lack the canonical nodABC genes indicates the existence of a new symbiotic rhizobium-legume process that is independent of Nod factors. The aim of this work was to improve our understanding of the mechanisms involved in this new interaction. First, through various cytological approaches, the process by which the bacterium infects the plant in the absence of Nod factors has been described. Second, in order to decipher the molecular basis of this interaction, a library of 15,000 Tn5 mutants of the ORS278 strain was screened on plant. This screening allowed the identification of about one hundred bacterial genes involved in this symbiotic process. These results led us to propose a model in which the establishment of the Nod-independent symbiosis involves, on one han d, the synthesis of a bacterial cytokinin that triggers nodule organogenesis, and on the other hand, others bacterial signals that permit the recognition with the host plant. Finally, we developed a genetic transformation procedure of Aeschynomene and we validated this tool by studying the heterologous expression of the early nodulin MtENOD11. Now, functional studies on Aeschynomene are possible to permit the characterization of the Nod-independent signaling pathway
    corecore