199 research outputs found

    Exploiting graphlet decomposition to explain the structure of complex networks: the GHuST framework

    Get PDF
    The characterization of topology is crucial in understanding network evolution and behavior. This paper presents an innovative approach, the GHuST framework to describe complex-network topology from graphlet decomposition. This new framework exploits the local information provided by graphlets to give a global explanation of network topology. The GHuST framework is comprised of 12 metrics that analyze how 2- and 3-node graphlets shape the structure of networks. The main strengths of the GHuST framework are enhanced topological description, size independence, and computational simplicity. It allows for straight comparison among different networks disregarding their size. It also reduces the complexity of graphlet counting, since it does not use 4- and 5-node graphlets. The application of the novel framework to a large set of networks shows that it can classify networks of distinct nature based on their topological properties. To ease network classification and enhance the graphical representation of them, we reduce the 12 dimensions to their main principal components. Furthermore, the 12 dimensions are easily interpretable. This enables the connection between complex-network analyses and diverse real applications

    Biodiversity Informatics: An interactive computer- aided identification and knowledge base on tree species of Lao PDR

    Get PDF
    International audienceObjectives ‱ To enrich the existing knowledge base (BIOTIK project*) on a major "hot spot" of biodiversity: the rain forests of Annamite Mountain range of Lao PDR, in the framework of the Inventory of biodiversity of forest canopies conducted in 2012 in Lao PDR under F. HallĂ© scientific direction, and also to participate to broader initiatives such as Pl@ntNet project**. ‱ To translate the identification tool in the Lao language in order to contribute to the capacity-building in plant taxonomy in the country. ‱ To transfer the identification system to touch pads, enabling plant identification and entering data directly in the field

    The energy center initiative at politecnico di torino: practical experiences on energy efficiency measures in the municipality of torino

    Get PDF
    Urban districts should evolve towards a more sustainable infrastructure and greener energy carriers. The utmost challenge is the smart integration and control, within the existing infrastructure, of new information and energy technologies (such as sensors, appliances, electric and thermal power and storage devices) that are able to provide multi-services based on multi-actors and multi and interchangeable energy carriers. In recent years, the Municipality of Torino represents an experimental scenario, in which practical experiences in the below-areas have taken place through a number of projects: 1. energy efficiency in building; 2. smart energy grids management and smart metering; 3. biowaste-to-energy: mixed urban/industrial waste management with enhanced energy recovery from biogas. This work provides an overview and update on the most interesting initiatives of smart energy management in the urban context of Torino, with an analysis and quantification of the advantages gained in terms of energy and environmental efficiency

    HV/HR-CMOS sensors for the ATLAS upgrade—concepts and test chip results

    Get PDF
    In order to extend its discovery potential, the Large Hadron Collider (LHC) will have a major upgrade (Phase II Upgrade) scheduled for 2022. The LHC after the upgrade, called High-Luminosity LHC (HL-LHC), will operate at a nominal leveled instantaneous luminosity of 5× 1034 cm−2 s−1, more than twice the expected Phase I . The new Inner Tracker needs to cope with this extremely high luminosity. Therefore it requires higher granularity, reduced material budget and increased radiation hardness of all components. A new pixel detector based on High Voltage CMOS (HVCMOS) technology targeting the upgraded ATLAS pixel detector is under study. The main advantages of the HVCMOS technology are its potential for low material budget, use of possible cheaper interconnection technologies, reduced pixel size and lower cost with respect to traditional hybrid pixel detector. Several first prototypes were produced and characterized within ATLAS upgrade R&D effort, to explore the performance and radiation hardness of this technology. In this paper, an overview of the HVCMOS sensor concepts is given. Laboratory tests and irradiation tests of two technologies, HVCMOS AMS and HVCMOS GF, are also given

    Radiation-hard active pixel sensors for HL-LHC detector upgrades based on HV-CMOS technology

    Get PDF
    Luminosity upgrades are discussed for the LHC (HL-LHC) which would make updates to the detectors necessary, requiring in particular new, even more radiation-hard and granular, sensors for the inner detector region. A proposal for the next generation of inner detectors is based on HV-CMOS: a new family of silicon sensors based on commercial high-voltage CMOS technology, which enables the fabrication of part of the pixel electronics inside the silicon substrate itself. The main advantages of this technology with respect to the standard silicon sensor technology are: low material budget, fast charge collection time, high radiation tolerance, low cost and operation at room temperature. A traditional readout chip is still needed to receive and organize the data from the active sensor and to handle high-level functionality such as trigger management. HV-CMOS has been designed to be compatible with both pixel and strip readout. In this paper an overview of HV2FEI4, a HV-CMOS prototype in 180 nm AMS technology, will be given. Preliminary results after neutron and X-ray irradiation are shown

    Rac1 and Rac3 isoform activation is involved in the invasive and metastatic phenotype of human breast cancer cells

    Get PDF
    INTRODUCTION: The metastatic progression of cancer is a direct result of the disregulation of numerous cellular signaling pathways, including those associated with adhesion, migration, and invasion. Members of the Rac family of small GTPases are known to act as regulators of actin cytoskeletal structures and strongly influence the cellular processes of integrin-mediated adhesion and migration. Even though hyperactivated Rac proteins have been shown to influence metastatic processes, these proteins have never been directly linked to metastatic progression. METHODS: To investigate a role for Rac and Cdc42 in metastatic breast cancer cell invasion and migration, relative endogenous Rac or Cdc42 activity was determined in a panel of metastatic variants of the MDA-MB-435 metastatic human breast cancer cell line using a p21-binding domain-PAK pull down assay. To investigate the migratory and invasive potential of the Rac isoforms in human breast cancer, namely Rac1 and the subsequently cloned Rac3, we stably expressed either dominant active Rac1 or dominant active Rac3 into the least metastatic cell variant. Dominant negative Rac1 or dominant negative Rac3 were stably expressed in the most metastatic cell variant. Cell lines expressing mutant Rac1 or Rac3 were analyzed using in vitro adhesion, migration and invasion assays. RESULTS: We show that increased activation of Rac proteins directly correlates with increasing metastatic potential in a panel of cell variants derived from a single metastatic breast cancer cell line (MDA-MB-435). The same correlation could not be found with activated Cdc42. Expression of a dominant active Rac1 or a dominant active Rac3 resulted in a more invasive and motile phenotype. Moreover, expression of either dominant negative Rac1 or dominant negative Rac3 into the most metastatic cell variant resulted in decreased invasive and motile properties. CONCLUSION: This study correlates endogenous Rac activity with high metastatic potential and implicates Rac in the regulation of cell migration and invasion in metastatic breast cancer cells. Taken together, these results suggest a role for both the Rac1 and Rac3 GTPases in human breast cancer progression
    • 

    corecore