326 research outputs found

    Distributed Management of Massive Data: an Efficient Fine-Grain Data Access Scheme

    Get PDF
    This paper addresses the problem of efficiently storing and accessing massive data blocks in a large-scale distributed environment, while providing efficient fine-grain access to data subsets. This issue is crucial in the context of applications in the field of databases, data mining and multimedia. We propose a data sharing service based on distributed, RAM-based storage of data, while leveraging a DHT-based, natively parallel metadata management scheme. As opposed to the most commonly used grid storage infrastructures that provide mechanisms for explicit data localization and transfer, we provide a transparent access model, where data are accessed through global identifiers. Our proposal has been validated through a prototype implementation whose preliminary evaluation provides promising results

    Protective Filtration for Microfluidic Nanoparticle Precipitation for Pharmaceutical Applications

    Get PDF
    Microfluidic processes are of great interest for the production of nanoparticles with reproducible properties. However, in real systems, it is difficult to completely exclude incidental production of larger particles, which can contaminate the product or clog downstream process modules. A class of microfluidic filters was devised for eliminating particulate contamination in multistage continuousā€flow processes. To achieve high throughput and filtration efficiency, a highā€surfaceā€area filter with an applicationā€adapted bonding method was developed. As a model application, the filtration efficiency was analyzed for lipid nanoparticles made by microfluidic antisolvent precipitation and the results were compared with requirements of the European and US guidelines

    Optimization in a Self-Stabilizing Service Discovery Framework for Large Scale Systems

    Get PDF
    Ability to find and get services is a key requirement in the development of large-scale distributed sys- tems. We consider dynamic and unstable environments, namely Peer-to-Peer (P2P) systems. In previous work, we designed a service discovery solution called Distributed Lexicographic Placement Table (DLPT), based on a hierar- chical overlay structure. A self-stabilizing version was given using the Propagation of Information with Feedback (PIF) paradigm. In this paper, we introduce the self-stabilizing COPIF (for Collaborative PIF) scheme. An algo- rithm is provided with its correctness proof. We use this approach to improve a distributed P2P framework designed for the services discovery. Significantly efficient experimental results are presented

    Systematic Comparison of Three Methods for Fragmentation of Long-Range PCR Products for Next Generation Sequencing

    Get PDF
    Next Generation Sequencing (NGS) technologies are gaining importance in the routine clinical diagnostic setting. It is thus desirable to simplify the workflow for high-throughput diagnostics. Fragmentation of DNA is a crucial step for preparation of template libraries and various methods are currently known. Here we evaluated the performance of nebulization, sonication and random enzymatic digestion of long-range PCR products on the results of NGS. All three methods produced high-quality sequencing libraries for the 454 platform. However, if long-range PCR products of different length were pooled equimolarly, sequence coverage drastically dropped for fragments below 3,000 bp. All three methods performed equally well with regard to overall sequence quality (PHRED) and read length. Enzymatic fragmentation showed highest consistency between three library preparations but performed slightly worse than sonication and nebulization with regard to insertions/deletions in the raw sequence reads. After filtering for homopolymer errors, enzymatic fragmentation performed best if compared to the results of classic Sanger sequencing. As the overall performance of all three methods was equal with only minor differences, a fragmentation method can be chosen solely according to lab facilities, feasibility and experimental design

    New tools and methods for direct programmatic access to the dbSNP relational database

    Get PDF
    Genome-wide association studies often incorporate information from public biological databases in order to provide a biological reference for interpreting the results. The dbSNP database is an extensive source of information on single nucleotide polymorphisms (SNPs) for many different organisms, including humans. We have developed free software that will download and install a local MySQL implementation of the dbSNP relational database for a specified organism. We have also designed a system for classifying dbSNP tables in terms of common tasks we wish to accomplish using the database. For each task we have designed a small set of custom tables that facilitate task-related queries and provide entity-relationship diagrams for each task composed from the relevant dbSNP tables. In order to expose these concepts and methods to a wider audience we have developed web tools for querying the database and browsing documentation on the tables and columns to clarify the relevant relational structure. All web tools and software are freely available to the public at http://cgsmd.isi.edu/dbsnpq. Resources such as these for programmatically querying biological databases are essential for viably integrating biological information into genetic association experiments on a genome-wide scale

    SPOT: a web-based tool for using biological databases to prioritize SNPs after a genome-wide association study

    Get PDF
    SPOT (http://spot.cgsmd.isi.edu), the SNP prioritization online tool, is a web site for integrating biological databases into the prioritization of single nucleotide polymorphisms (SNPs) for further study after a genome-wide association study (GWAS). Typically, the next step after a GWAS is to genotype the top signals in an independent replication sample. Investigators will often incorporate information from biological databases so that biologically relevant SNPs, such as those in genes related to the phenotype or with potentially non-neutral effects on gene expression such as a splice sites, are given higher priority. We recently introduced the genomic information network (GIN) method for systematically implementing this kind of strategy. The SPOT web site allows users to upload a list of SNPs and GWAS P-values and returns a prioritized list of SNPs using the GIN method. Users can specify candidate genes or genomic regions with custom levels of prioritization. The results can be downloaded or viewed in the browser where users can interactively explore the details of each SNP, including graphical representations of the GIN method. For investigators interested in incorporating biological databases into a post-GWAS SNP selection strategy, the SPOT web tool is an easily implemented and flexible solution

    Direct AMPK activation corrects NASH in rodents through metabolic effects and direct action on inflammation and fibrogenesis

    Get PDF
    No approved therapies are available for nonalcoholic steatohepatitis (NASH). Adenosine monophosphateā€“activated protein kinase (AMPK) is a central regulator of cell metabolism; its activation has been suggested as a therapeutic approach to NASH. Here we aimed to fully characterize the potential for direct AMPK activation in preclinical models and to determine mechanisms that could contribute to efficacy for this disease. A novel small-molecule direct AMPK activator, PXL770, was used. Enzyme activity was measured with recombinant complexes. De novo lipogenesis (DNL) was quantitated in vivo and in mouse and human primary hepatocytes. Metabolic efficacy was assessed in ob/ob and high-fat dietā€“fed mice. Liver histology, biochemical measures, and immune cell profiling were assessed in diet-induced NASH mice. Direct effects on inflammation and fibrogenesis were assessed using primary mouse and human hepatic stellate cells, mouse adipose tissue explants, and human immune cells. PXL770 directly activated AMPK in vitro and reduced DNL in primary hepatocytes. In rodent models with metabolic syndrome, PXL770 improved glycemia, dyslipidemia, and insulin resistance. In mice with NASH, PXL770 reduced hepatic steatosis, ballooning, inflammation, and fibrogenesis. PXL770 exhibited direct inhibitory effects on pro-inflammatory cytokine production and activation of primary hepatic stellate cells. Conclusion: In rodent models, direct activation of AMPK is sufficient to produce improvements in all core components of NASH and to ameliorate related hyperglycemia, dyslipidemia, and systemic inflammation. Novel properties of direct AMPK activation were also unveiled: improved insulin resistance and direct suppression of inflammation and fibrogenesis. Given effects also documented in human cells (reduced DNL, suppression of inflammation and stellate cell activation), these studies support the potential for direct AMPK activation to effectively treat patients with NASH

    DƩfinition des centres experts en endomƩtriose

    Get PDF
    OBJECTIVES: The CollĆØge national des gynĆ©cologues obstĆ©triciens franƧais (CNGOF), in agreement with the SociĆ©tĆ© de chirurgie gynĆ©cologique et pelvienne (SCGP), has set up a commission in 2017 to define endometriosis expert centres, with the aim of optimizing endometriosis care in France. METHODS: The committee included members from university and general hospitals as well as private facilities, representing medical, surgical and radiological aspects of endometriosis care. Opinion of endometriosis patients\u27 associations was obtained prior to writing this work. The final text was presented and unanimously validated by the members of the CNGOF Board of Directors at its meeting of October 13, 2017. RESULTS: Based on analysis of current management of endometriosis and the last ten years opportunities in France, the committee has been able to define the contours of endometriosis expert centres. The objectives, production specifications, mode of operation, missions and funding for these centres were described. The following missions have been specifically defined: territorial organization, global and referral care, communication and teaching as well as research and evaluation. CONCLUSION: Because of its daily impact for women and its economic burden in France, endometriosis justifies launching of expert centres throughout the country with formal accreditation by health authorities, ideally as part of the National Health Plan

    The definition of Endometriosis Expert Centres

    Get PDF
    Endometriosis is a common condition that causes pain and infertility. It can lead to absenteeism and also to multiple surgeries with a consequent risk of impaired fertility, and constitutes a major public health cost. Despite the existence of numerous national and international guidelines, the management of endometriosis remains suboptimal. To address this issue, the French College of Gynaecologists and Obstetricians (CNGOF) and the Society of Gynaecological and Pelvic Surgery (SCGP) convened a committee of experts tasked with defining the criteria for establishing a system of care networks, headed by Expert Centres, covering all of mainland France and its overseas territories. This document sets out the criteria for the designation of Expert Centres. It will serve as a guide for the authorities concerned, to ensure that the means are provided to adequately manage patients with endometriosis

    Statistical Guidance for Experimental Design and Data Analysis of Mutation Detection in Rare Monogenic Mendelian Diseases by Exome Sequencing

    Get PDF
    Recently, whole-genome sequencing, especially exome sequencing, has successfully led to the identification of causal mutations for rare monogenic Mendelian diseases. However, it is unclear whether this approach can be generalized and effectively applied to other Mendelian diseases with high locus heterogeneity. Moreover, the current exome sequencing approach has limitations such as false positive and false negative rates of mutation detection due to sequencing errors and other artifacts, but the impact of these limitations on experimental design has not been systematically analyzed. To address these questions, we present a statistical modeling framework to calculate the power, the probability of identifying truly disease-causing genes, under various inheritance models and experimental conditions, providing guidance for both proper experimental design and data analysis. Based on our model, we found that the exome sequencing approach is well-powered for mutation detection in recessive, but not dominant, Mendelian diseases with high locus heterogeneity. A disease gene responsible for as low as 5% of the disease population can be readily identified by sequencing just 200 unrelated patients. Based on these results, for identifying rare Mendelian disease genes, we propose that a viable approach is to combine, sequence, and analyze patients with the same disease together, leveraging the statistical framework presented in this work
    • ā€¦
    corecore