1,457 research outputs found

    Influence of viscosity and the adiabatic index on planetary migration

    Full text link
    The strength and direction of migration of low mass embedded planets depends on the disk's thermodynamic state, where the internal dissipation is balanced by radiative transport, and the migration can be directed outwards, a process which extends the lifetime of growing embryos. Very important parameters determining the structure of disks, and hence the direction of migration, are the viscosity and the adiabatic index. In this paper we investigate the influence of different viscosity prescriptions (alpha-type and constant) and adiabatic indices on disk structures and how this affects the migration rate of planets embedded in such disks. We perform 3D numerical simulations of accretion disks with embedded planets. We use the explicit/implicit hydrodynamical code NIRVANA that includes full tensor viscosity and radiation transport in the flux-limited diffusion approximation, as well as a proper equation of state for molecular hydrogen. The migration of embedded 20Earthmass planets is studied. Low-viscosity disks have cooler temperatures and the migration rates of embedded planets tend toward the isothermal limit. In these disks, planets migrate inwards even in the fully radiative case. The effect of outward migration can only be sustained if the viscosity in the disk is large. Overall, the differences between the treatments for the equation of state seem to play a more important role in disks with higher viscosity. A change in the adiabatic index and in the viscosity changes the zero-torque radius that separates inward from outward migration. For larger viscosities, temperatures in the disk become higher and the zero-torque radius moves to larger radii, allowing outward migration of a 20 Earth-mass planet to persist over an extended radial range. In combination with large disk masses, this may allow for an extended period of the outward migration of growing protoplanetary cores

    High-Temperature Processing of Solids Through Solar Nebular Bow Shocks: 3D Radiation Hydrodynamics Simulations with Particles

    Full text link
    A fundamental, unsolved problem in Solar System formation is explaining the melting and crystallization of chondrules found in chondritic meteorites. Theoretical models of chondrule melting in nebular shocks has been shown to be consistent with many aspects of thermal histories inferred for chondrules from laboratory experiments; but, the mechanism driving these shocks is unknown. Planetesimals and planetary embryos on eccentric orbits can produce bow shocks as they move supersonically through the disk gas, and are one possible source of chondrule-melting shocks. We investigate chondrule formation in bow shocks around planetoids through 3D radiation hydrodynamics simulations. A new radiation transport algorithm that combines elements of flux-limited diffusion and Monte Carlo methods is used to capture the complexity of radiative transport around bow shocks. An equation of state that includes the rotational, vibrational, and dissociation modes of H2_2 is also used. Solids are followed directly in the simulations and their thermal histories are recorded. Adiabatic expansion creates rapid cooling of the gas, and tail shocks behind the embryo can cause secondary heating events. Radiative transport is efficient, and bow shocks around planetoids can have luminosities ∼\simfew×10−8\times10^{-8} L⊙_{\odot}. While barred and radial chondrule textures could be produced in the radiative shocks explored here, porphyritic chondrules may only be possible in the adiabatic limit. We present a series of predicted cooling curves that merit investigation in laboratory experiments to determine whether the solids produced by bow shocks are represented in the meteoritic record by chondrules or other solids.Comment: Accepted for publication in ApJ. Images have been resized to conform to arXiv limits, but are all readable upon adjusting the zoom. Changes from v1: Corrected typos discovered in proofs. Most changes are in the appendi

    A COMPARATIVE STUDY OF LARVAL GENE EXPRESSION BETWEEN A PAEDOMORPHIC AND METAMORPHIC SPECIES OF AMBYSTOMATID SALAMANDER

    Get PDF
    Ambystoma tigrinum undergoes an obligatory metamorphosis while A. mexicanum fails to metamorphose and exhibits paedomorphosis. While it is clear that salamander paedomorphosis is associated with genetic changes that delay developmental timing, it is not clear when and how these changes manifest during development. It is possible that paedomorphic and metamorphic larvae show equivalent patterns of developmental until late in the larval period, when brain regions become competent to stimulate the release of metamorphic hormones. To test this hypothesis, I compared gene expression patterns between the brains of A. mexicanum and A. t. tigrinum larvae. In support of the developmental equivalence hypothesis, 114 differentially expressed genes (DEGs) were identified in common between the species and all but 2 showed the same temporal pattern of expression. However, more DEGs were identified uniquely from each species. In particular, several genes that are associated with the hypothalamus-pituitaryinterrenal axis, which is implicated in metamorphic regulation in amphibians, exhibited significant expression differences between A. mexicanum and A. t. tigrinum larvae. The results show that metamorphic and paedomorphic modes of development are associated with different transcriptional programs in the brain and these programs diverge during early larval development

    Chemistry in a gravitationally unstable protoplanetary disc

    Full text link
    Until now, axisymmetric, alpha-disc models have been adopted for calculations of the chemical composition of protoplanetary discs. While this approach is reasonable for many discs, it is not appropriate when self-gravity is important. In this case, spiral waves and shocks cause temperature and density variations that affect the chemistry. We have adopted a dynamical model of a solar-mass star surrounded by a massive (0.39 Msun), self-gravitating disc, similar to those that may be found around Class 0 and early Class I protostars, in a study of disc chemistry. We find that for each of a number of species, e.g. H2O, adsorption and desorption dominate the changes in the gas-phase fractional abundance; because the desorption rates are very sensitive to temperature, maps of the emissions from such species should reveal the locations of shocks of varying strengths. The gas-phase fractional abundances of some other species, e.g. CS, are also affected by gas-phase reactions, particularly in warm shocked regions. We conclude that the dynamics of massive discs have a strong impact on how they appear when imaged in the emission lines of various molecular species.Comment: 10 figures and 3 tables, accepted for publication in MNRA

    Classification and reduction of pilot error

    Get PDF
    Human error is a primary or contributing factor in about two-thirds of commercial aviation accidents worldwide. With the ultimate goal of reducing pilot error accidents, this contract effort is aimed at understanding the factors underlying error events and reducing the probability of certain types of errors by modifying underlying factors such as flight deck design and procedures. A review of the literature relevant to error classification was conducted. Classification includes categorizing types of errors, the information processing mechanisms and factors underlying them, and identifying factor-mechanism-error relationships. The classification scheme developed by Jens Rasmussen was adopted because it provided a comprehensive yet basic error classification shell or structure that could easily accommodate addition of details on domain-specific factors. For these purposes, factors specific to the aviation environment were incorporated. Hypotheses concerning the relationship of a small number of underlying factors, information processing mechanisms, and error types types identified in the classification scheme were formulated. ASRS data were reviewed and a simulation experiment was performed to evaluate and quantify the hypotheses

    Chondrule Formation in Bow Shocks around Eccentric Planetary Embryos

    Full text link
    Recent isotopic studies of Martian meteorites by Dauphas & Pourmond (2011) have established that large (~ 3000 km radius) planetary embryos existed in the solar nebula at the same time that chondrules - millimeter-sized igneous inclusions found in meteorites - were forming. We model the formation of chondrules by passage through bow shocks around such a planetary embryo on an eccentric orbit. We numerically model the hydrodynamics of the flow, and find that such large bodies retain an atmosphere, with Kelvin-Helmholtz instabilities allowing mixing of this atmosphere with the gas and particles flowing past the embryo. We calculate the trajectories of chondrules flowing past the body, and find that they are not accreted by the protoplanet, but may instead flow through volatiles outgassed from the planet's magma ocean. In contrast, chondrules are accreted onto smaller planetesimals. We calculate the thermal histories of chondrules passing through the bow shock. We find that peak temperatures and cooling rates are consistent with the formation of the dominant, porphyritic texture of most chondrules, assuming a modest enhancement above the likely solar nebula average value of chondrule densities (by a factor of 10), attributable to settling of chondrule precursors to the midplane of the disk or turbulent concentration. We calculate the rate at which a planetary embryo's eccentricity is damped and conclude that a single planetary embryo scattered into an eccentric orbit can, over ~ 10e5 years, produce ~ 10e24 g of chondrules. In principle, a small number (1-10) of eccentric planetary embryos can melt the observed mass of chondrules in a manner consistent with all known constraints.Comment: Accepted for publication in The Astrophysical Journa

    The collapse of protoplanetary clumps formed through disc instability: 3D simulations of the pre-dissociation phase

    Full text link
    We present 3D smoothed particle hydrodynamics simulations of the collapse of clumps formed through gravitational instability in the outer part of a protoplanetary disc. The initial conditions are taken directly from a global disc simulation, and a realistic equation of state is used to follow the clumps as they contract over several orders of magnitude in density, approaching the molecular hydrogen dissociation stage. The effects of clump rotation, asymmetries, and radiative cooling are studied. Rotation provides support against fast collapse, but non-axisymmetric modes develop and efficiently transport angular momentum outward, forming a circumplanetary disc. This transport helps the clump reach the dynamical collapse phase, resulting from molecular hydrogen dissociation, on a thousand-year timescale, which is smaller than timescales predicted by some previous spherical 1D collapse models. Extrapolation to the threshold of the runaway hydrogen dissociation indicates that the collapse timescales can be shorter than inward migration timescales, suggesting that clumps could survive tidal disruption and deliver a proto-gas giant to distances of even a few AU from the central star.Comment: Accepted for publication in MNRA
    • …
    corecore