361 research outputs found

    POLITICAL ELECTIONS FOR MARKETERS

    Get PDF
    SrFe12O19 coatings, intended as electromagnetic wave absorbers, were produced by atmospheric plasma spraying (APS) using two different kindsof feedstock powders: spray-dried agglomerates of micrometric SrFe12O19 particles (type-A) or spray-dried agglomerates of raw materials (SrCO3,Fe2O3), reactively sintered at 1100 ◦C (type-B).During spraying, type-A agglomerates either remain unmelted, producing porous coating regions where crystalline hexaferrite is retained, orare disrupted into smaller granules which melt completely, resulting in dense coating regions with no crystalline hexaferrite.The sintered type-B agglomerates possess higher cohesive strength and do not fall apart: the finer ones melt completely, whereas, in the largerones, the outer region melts and infiltrates the porous unmelted core which retains crystalline hexaferrite. Dense coatings can therefore be obtainedwhile preserving high amounts of crystalline hexaferrite even inside the dense areas. Such coatings show magnetic properties that are promisingfor electromagnetic wave absorption applications

    Development of matte finishes in electrostatic (EFB) and conventional hot dipping (CHDFB) fluidized bed coating process

    Get PDF
    This study focuses on the correlation between the thermo-rheological properties of a thermosetting powder coating system with its surface structure build-up. Epoxy powder coating systems, which displayed surface matting and surface wrinkling, were examined. Firstly, the evolution of the complex viscosity was correlated with the cure kinetic. Secondly, the structure build-up on the surface of the coatings was investigated with a combined SEM-CLA profilometry analysis at different stages of curing process for both EFB and CHDFB coating processes. Different finishes were found to characterize the films applied by using EFB and CHDFB coating processes as a result of the different way the film is heated by. Finally, a strict relationship of film morphology to the degree of conversion and to the evolution of the complex viscosity was found out for both EFB and CHDFB coating processes. The surface structure is built up after gelation point and continues to evolve after gelation with a full development of the film fine structure. Differences were observed in the surface structure build-up when different curing temperature was used, thereby indicating an influence of minimum viscosity on achievable finishing. These experimental results lead to further advances in a better understanding of the formation of surface topography and morphology of polymeric films. They also provide important indications for the settings of curing parameters in both EFB and CHDFB coating processes as well as for the development of new powder coating formulations. © 2007 Elsevier B.V. All rights reserved

    Microstructural and tribological comparison of HVOF-sprayed and post-treated M-Mo-Cr-Si (M = Co, Ni) alloy coatings

    Get PDF
    High velocity oxygen-fuel (HVOF)-sprayed wear resistant Co-28%Mo-17%Cr-3%Si and Ni-32%Mo-15%Cr-3%Si coatings, both as-sprayed and after heat treatments at 600 degrees C for 1 h, have been studied. Particularly, their dry sliding wear behaviour has been compared by ball-on-disk tests against different counterbodies (100Cr6 steel and sintered alumina), and differences were discussed based on microstructural characteristics and micromechanical properties (Vickers microindentation and scratch test responses). As-sprayed coatings contain oxide stringers, are mostly amorphous and display rather low Vickers microhardness (about 7.4 GPa for the Co-based and 6.2 GPa for the Ni-based), toughness and elastic modulus. Heat-treated ones display sub-micrometric crystalline intermetallics, improving hardness (9.6 GPa and 7.4 GPa, respectively) and elastic modulus. Scratch tests indicate greater brittleness of the Ni-based alloy (higher tendency to cracking). Due to low hardness and toughness, both as-sprayed coatings undergo wear loss against steel and alumina counterparts. The more plastic Co-based alloy undergoes higher adhesive wear against steel and lower abrasive wear against alumina; the situation is reversed for the Ni-based alloy. After heat treatment, the wear loss against steel is very low for both coatings; abrasive wear still occurs against alumina. (c) 2007 Elsevier B.V. All rights reserved

    Defect-Correlated Vickers Microhardness of Al-Si-Mg Alloy Manufactured by Laser Powder Bed Fusion with Post-process Heat Treatments

    Get PDF
    Laser powder bed fusion is an additive manufacturing process characterized by different advantages like the manufacture of samples with complex geometry without the use of tools and/or molds. Generally, the manufactured samples are characterized by high tensile strengths which, however, can be affected by the presence of defects due to the unoptimized process parameters. In a large applications field, a low density of the as-built AlSi10Mg samples is a very important parameter to considered, e.g., due to both the loss of the tensile strengths correlated with a premature failure of the samples and the increase in time and costs associated with the manufacturing process. In addition, different post-process heat treatments can increase these effects leading to an ineffective manufacturing process. In this scenario, the present work shows the analysis of spherical and lack-of-fusion pores induced by the laser powder bed fusion process on the AlSi10Mg samples and their variations after different heat treatments (direct aging and T6). At the same time, the influence of pores on the Vickers microhardness and the tensile properties has been studied in the same AlSi10Mg samples (bars and billets) that were printed with single- and double-laser machine setup. Different process parameters were also analyzed and compared. The study was supported by the microstructural and pore analysis performed by optical microscopy along the XZ plane (build direction) and the XY plane. Finally, the greatest effects of pores were observed on the Vickers microhardness values; in fact, two different relationships between microhardness and density variation are discussed. The T6 heat treatment leads to a rounding of the pores already formed in the as-built samples and to a formation of new small pores. Graphical Abstract: [Figure not available: see fulltext.

    Suspension High Velocity Oxy-Fuel (SHVOF)-sprayed alumina coatings: microstructure, nanoindentation and wear

    Get PDF
    Suspension High Velocity Oxy Fuel Spraying (SHVOF) can be used to produce thermally sprayed coatings from powdered feedstocks too small to be processed by mechanical feeders, allowing formation of nanostructured coatings with improved density and mechanical properties. Here, alumina coatings were produced from sub-micron sized feedstock in aqueous suspension, using two flame combustion parameters yielding contrasting microstructures. Both coatings were tested in dry sliding wear conditions with an alumina counterbody. The coating processed with high combustion power of 101 kW contained 74 wt% amorphous phase and 26 wt% crystalline phase (95 wt% gamma and 3 wt% alpha alumina) while the 72 kW coating contained lower 58 wt% amorphous phase and 42 wt% crystalline phases (73 wt% was alpha and 26 wt % gamma). The 101 kW coating had a dry sliding specific wear rate between 4-4.5 x 10-5 mm3/Nm, 2 orders of magnitude higher than the 72 kW coating wear rate of 2-4.2 x 10-7 mm3/Nm. A severe wear regime dominated by brittle fracture and grain pull out of the coating was responsible for the wear of the 101 kW coating, explained by mean fracture toughness three times lower than the 72 kW coating, owing to the almost complete absence of alpha alumina

    Static and dynamic precipitation phenomena in laser powder bed-fused Ti6Al4V alloy

    Get PDF
    The present paper investigates static and dynamic precipitation phenomena in the Ti6Al4V alloy produced via laser-powder bed fusion, solubilized at 1050 degrees C and aged in the range of 450-650 degrees C. In relation to the distance from the platform on which the samples are disposed during the solution heat treatment, the microstructure varies from alpha-laths to alpha-colonies arranged in a Widmanstatten structure. The aging heat treatment at 450 degrees C promotes the formation of stacking faults into alpha-laths and the precipitation of alpha(2)-Ti3Al phases. SEM and TEM observations reveal that the density of precipitates increases after aging at 500 degrees C, while coarsening of the alpha-phase occurs only after aging heat treatment at 600 degrees C. Vickers microhardness measurements reveal different peak-aging conditions and show that the alloy is unstable at high temperatures (T > 450 degrees C), both in the case of static and dynamic precipitation phenomena. Only the aging profile at 450 degrees C shows a constant trend of Vickers microhardness after 4 h of treatment

    ClusterFix: A Cluster-Based Debiasing Approach without Protected-Group Supervision

    Get PDF
    The failures of Deep Networks can sometimes be ascribed to biases in the data or algorithmic choices. Existing debiasing approaches exploit prior knowledge to avoid unintended solutions; we acknowledge that, in real-world settings, it could be unfeasible to gather enough prior information to characterize the bias, or it could even raise ethical considerations. We hence propose a novel debiasing approach, termed ClusterFix, which does not require any external hint about the nature of biases. Such an approach alters the standard empirical risk minimization and introduces a per-example weight, encoding how critical and far from the majority an example is. Notably, the weights consider how difficult it is for the model to infer the correct pseudo-label, which is obtained in a self-supervised manner by dividing examples into multiple clusters. Extensive experiments show that the misclassification error incurred in identifying the correct cluster allows for identifying examples prone to bias-related issues. As a result, our approach outperforms existing methods on standard benchmarks for bias removal and fairness

    Good continuation in 3D: the neurogeometry of stereo vision

    Get PDF
    Classical good continuation for image curves is based on 2D position and orientation. It is supported by the columnar organization of cortex, by psychophysical experiments, and by rich models of (differential) geometry. Here, we extend good continuation to stereo by introducing a neurogeometric model to abstract cortical organization. Our model clarifies which aspects of the projected scene geometry are relevant to neural connections. The model utilizes parameterizations that integrate spatial and orientation disparities, and provides insight into the psychophysics of stereo by yielding a well-defined 3D association field. In sum, the model illustrates how good continuation in the (3D) world generalizes good continuation in the (2D) plane

    HVOF-Deposited WCCoCr as Replacement for Hard Cr in Landing Gear Actuators

    Get PDF
    WCCoCr coatings deposited by HVOF can replace hard Cr on landing gear components. Powders with two different WC particle sizes (micro and nano-) and geometries have been employed to study the effects on the coating’s properties. Moreover, coatings produced employing two sets of parameters resulting in high and low flame temperatures have been evaluated. Minor differences in microstructure and morphology were observed for the two powders employing the same spraying parameters, but the nano-sized powder exhibited a higher spraying efficiency. However, more significant microstructural changes result when the low- and high-energy spray parameters are used. Moreover, results of various tests which include adhesion, wear, salt fog corrosion resistance, liquid immersion, and axial fatigue strength, indicate that the coatings produced with high-energy flame are similar in behavior. On the other hand, the nanostructured low-energy flame coating exhibited a significantly lower salt fog corrosion resistanc

    Improving tribological properties of cast Al-Si alloys through application of wear-resistant thermal spray coatings

    Get PDF
    Flame Spray Thermal Spray coatings are low-cost, high-wear surface-treatment technologies. However, little has been reported on their potential effects on cast automotive aluminum alloys. The aim of this research was to investigate the tribological properties of as-sprayed NiCrBSi and WC/12Co Flame Spray coatings applied to two cast aluminum alloys: high-copper LM24 (AlSi8Cu3Fe), and low-copper LM25 (AlSi7Mg). Potential interactions between the mechanical properties of the substrate and the deposited coatings were deemed to be significant. Microstructural, microhardness, friction, and wear (pin-on-disk, microabrasion, Taber abrasion, etc.) results are reported, and the performance differences between coatings on the different substrates were noted. The coefficient of friction was reduced from 0.69-0.72 to 0.12-0.35. Wear (pin-on-disk) was reduced by a factor of 103-104, which was related to the high surface roughness of the coatings. Microabrasion wear was dependent on coating hardness and applied load. Taber abrasion results showed a strong dependency on the substrate, coating morphology, and homogeneity
    corecore