39 research outputs found

    Advancing experimentation-as-a-service through urban IoT experiments

    Get PDF
    Smart cities are becoming a vibrant application domain for a number of science fields. As such, service providers and stakeholders are beginning to integrate co-creation aspects into current implementations to shape the future smart city solutions. In this context, holistic solutions are required to test such aspects in real city-scale Internet of Things (IoT) deployments, considering the complex city ecosystems. In this paper, we discuss OrganiCity's implementation of an experimentation-as-a-service (EaaS) framework, presenting a toolset that allows developing, deploying, and evaluating smart city solutions in a one-stop shop manner. This is the first time such an integrated toolset is offered in the context of a large-scale IoT infrastructure, which spans across multiple European cities. We discuss the design and implementation of the toolset, presenting our view on what EaaS should provide, and how it is implemented. We present initial feedback from 25 experimenter teams that have utilized this toolset in the OrganiCity project, along with a discussion on two detailed actual use cases to validate our approach. Learnings from all experiments are discussed as well as architectural considerations for platform scaling. Our feedback from experimenters indicates that EaaS is a viable and useful approach.The authors would like to thank the experimenter teams and volunteers who participated in OrganiCit

    Glioneuronal tumor with ATRX alteration, kinase fusion and anaplastic features (GTAKA): a molecularly distinct brain tumor type with recurrent NTRK gene fusions

    Get PDF
    Glioneuronal tumors are a heterogenous group of CNS neoplasms that can be challenging to accurately diagnose. Molecular methods are highly useful in classifying these tumors-distinguishing precise classes from their histological mimics and identifying previously unrecognized types of tumors. Using an unsupervised visualization approach of DNA methylation data, we identified a novel group of tumors (n = 20) that formed a cluster separate from all established CNS tumor types. Molecular analyses revealed ATRX alterations (in 16/16 cases by DNA sequencing and/or immunohistochemistry) as well as potentially targetable gene fusions involving receptor tyrosine-kinases (RTK; mostly NTRK1-3) in all of these tumors (16/16; 100%). In addition, copy number profiling showed homozygous deletions of CDKN2A/B in 55% of cases. Histological and immunohistochemical investigations revealed glioneuronal tumors with isomorphic, round and often condensed nuclei, perinuclear clearing, high mitotic activity and microvascular proliferation. Tumors were mainly located supratentorially (84%) and occurred in patients with a median age of 19 years. Survival data were limited (n = 18) but point towards a more aggressive biology as compared to other glioneuronal tumors (median progression-free survival 12.5 months). Given their molecular characteristics in addition to anaplastic features, we suggest the term glioneuronal tumor with ATRX alteration, kinase fusion and anaplastic features (GTAKA) to describe these tumors. In summary, our findings highlight a novel type of glioneuronal tumor driven by different RTK fusions accompanied by recurrent alterations in ATRX and homozygous deletions of CDKN2A/B. Targeted approaches such as NTRK inhibition might represent a therapeutic option for patients suffering from these tumors

    Blooming of insecticides from polyethylene mesh and film

    Get PDF
    Malaria remains a public health concern with vector control still the vital component of disease prevention, control, and elimination strategies. Recent years has seen a “stalling” in the progress made towards the reduction in the global malaria burden, highlighting the need to develop new, innovative, and safe alternative tools and delivery systems to achieve global malaria elimination. Interventions based on the use of indoor residual spraying (IRS) and long-life insecticidal bed nets (LLINs), i.e. insecticide-containing wall linings (IWLs), can contribute towards the reduction of malaria. Both LLINs and IWLs rely on the presence of insecticides on the fibre or filament surfaces. However, materials directly incorporating the insecticides into the polymer melt during extrusion, allows for effective killing of the mosquitoes when they come into contact with the surface of the material, only if there is insecticide present there. This means that the insecticide must migrate to the surface and precipitate there (bloom). Over time the internal concentration of insecticide will decay. This investigation was done using Fourier transform infrared spectroscopy (FTIR) in both the transmission and attenuated total reflection (ATR) modes to better understand the blooming of three World Health Organization-approved contact insecticides, i.e. alphacypermethrin, fipronil and chlorfenapyr, from mesh or film to better understand the likeliness of insecticides within the materials to migrate to the surface. Film-based samples were prepared in addition to wall lining mesh, because of their easier characterisation than the irregular shaped mesh filaments. FTIR, in ATR and in transmission modes, enabled the tracking of the migration of the three insecticides, over time to the surface of polyethylene mesh or film. This made it possible to estimate the apparent solubility of the insecticides in the polymer matrix. However, scanning electron microscopy (SEM) revealed that a portion of the insecticide is trapped, in a crystalline state, inside the polymer matrix. These results suggest the possibility of developing products-based insecticides for protection against infective mosquito bites in malaria-endemic regions.The Deutsche Forschungsgemeinschaft (DFG), Germany and the University of Pretoria’s Postdoctoral Fellowship Programme.http://www.tandfonline.com/loi/ttrs20hj2021Chemical EngineeringSchool of Health Systems and Public Health (SHSPH)UP Centre for Sustainable Malaria Control (UP CSMC
    corecore